CONDITIONAL TERM STRUCTURE OF INFLATION FORECAST UNCERTAINTY: THE COPULA APPROACH

WOJCIECH CHAREMZA*, CARLOS DÍAZ* AND SVETLANA MAKAROVA**

* University of Leicester, UK
** University College London, UK

July 2015

WORK IN PROGRESS - DO NOT QUOTE WITHOUT PERMISSION.

KEYWORDS: macroeconomic forecasting, inflation, uncertainty, non-normality, density forecasting, forecast term structure, copula modelling

JEL codes: C53, E37, E52

ACKNOWLEDGEMENT

Financial support of the ESRC/ORA project RES-360-25-0003 Probabilistic Approach to Assessing Macroeconomic Uncertainties is gratefully acknowledged. This research used the ALICE High Performance Computing Facility at the University of Leicester. We are grateful to the participants of conferences of the International Association of Applied Econometrics in London, 2014 and the Conference of the International Banking Society in Lisbon, 2014 for constructive comments. We are solely responsible for all remaining deficiencies.

ABSTRACT

The paper introduces the concept of conditional inflation forecast uncertainty. It is proposed that the joint and conditional distributions of the bivariate forecast uncertainty can be derived from estimation unconditional distributions of these uncertainties and applying appropriate copula function. Empirical results have been obtained for Canada and US. Term structure has been evaluated in the form of unconditional and conditional probabilities of hitting the inflation range of ±1% around the Canadian inflation target. The paper shows that inflation targeting precision can be effectively forecasted with the use of ex-ante formulated conditional and unconditional probabilities of inflation being outside the pre-defined band around the target. It also suggests a new measure of inflation forecast uncertainty that is less affected by external inflation than the measures based solely on forecast errors.
1. INTRODUCTION

Stimulated by the current uncertain economic climate, there has been an increasing interest in the measurement and evaluation of macroeconomic uncertainty. The research has predominantly focused on the development of the univariate conditional measures of uncertainty, describing it either for particular macroeconomic indicators (usually inflation or output, see e.g. Clements, 2014; Charemza, Díaz and Makarova, 2015; Lahiri and Sheng, 2010; Lahiri, Pend and Sheng, 2014; and others), or the aggregated macroeconomic, policy or behavioural uncertainty (Jurado, Ludvigson and Ng, 2015; Tuckett et al., 2014; Baker, Bloom and Davis, 2013). These three types of measures are usually significantly correlated among themselves, especially the indicators’ measures and the aggregated measures, as the former are often incorporated within the latter. However, this correlation is, in some cases, disappearing, and the inflation and macroeconomic uncertainties become, on the surface, unrelated.

This paper claims that such lack of correlation might result from interrelations between inflation forecast uncertainty for different countries. Section 2 provides motivation for the research by presenting rather puzzling result of a lack of correlation between inflation forecast uncertainty and economic policy uncertainty for Canada. It is claimed that this was the result of conditioning inflation uncertainty in Canada on that in the US. Section 3 introduces measures and indicators of the bivariate, unconditional and conditional uncertainty. Section 4 gives the results of the estimation of the univariate (unconditional) uncertainties. Section 5 discusses main results for Canada and shows that the probabilities of inflation in Canada being within ±1% band around the target increases, especially for short forecast horizons, if conditioned on the US inflation being within similar bands. It shows that inflation targeting precision can be effectively improved with the use of ex-ante formulated conditional and unconditional probabilities of inflation being in the pre-defined band around the target. It also suggests a new measure of inflation forecast uncertainty that is less affected by external inflation than the measures based solely on forecast errors. Section 6 concludes.

2. MOTIVATION: WHAT HAPPENED TO CORRELATION BETWEEN THE UNCERTAINTIES?

The motivation for this research has been provided by puzzling results of correlations between a rudimentary measure of inflation forecast uncertainty and economic policy uncertainty. Inflation uncertainty is evaluated simply by the squares of forecast errors made from a univariate ARMA-GARCH model. Table 1 contains Spearman’s rank correlation coefficients of the logarithms of such squares of forecast errors for the forecast horizons from 1 to 12 months with the logarithms of economic policy uncertainty index (EPU), developed by Baker, Bloom and Davis (2013) and available at http://www.policyuncertainty.com/ for selected countries. The EPU is a three-component index, based on (a) the frequency of the use of world ‘uncertainty’ in leading newspapers, (b) tax code provisions and (c) disagreement between the forecasters (so-called uncertainty by disagreement). For US, we have additionally included Spearman’s rank correlation coefficients of the forecast errors with the Jurado, Ludvigson and Ng (2015) measure of macroeconomic uncertainty, denoted as JLN, with data described in Jurado, Ludvigson and Ng, (2014). The period for which the correlations are computed is from January 1997 until December 2012, where the last data on the JLN index is available. P-values of the correlation coefficients have been computed by simple bootstrap. They are not reported here, but that correlation coefficient that are not significant at 10% level are boldfaced.

1 For some countries only first two components are applied.
Table 1 indicates that, except for Canada, there is a significant positive correlation between the squares of forecast errors and uncertainty measures for most forecasts horizons. Such correlation is in fact expected, as inflation forecast errors constitute a substantial component of macroeconomic uncertainty. However, for Canada, the correlation is predominantly insignificant. Closer inspection of data suggests that such breakdown in correlation was mainly caused by an unpredictable (by a univariate autoregressive model) fall in inflation in the first half of 1990’s, where the decline in Canadian inflation was preceded by an earlier inflation drop in US and therefore foreseen by the Canadian media. As media information constitute a relevant component of the political uncertainty, it affected the EPU earlier, than the changes in inflation actually happen.

<table>
<thead>
<tr>
<th></th>
<th>EPU</th>
<th>US_JLN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Canada</td>
<td>France</td>
</tr>
<tr>
<td>1</td>
<td>0.05</td>
<td>0.02</td>
</tr>
<tr>
<td>2</td>
<td>-0.03</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>0.01</td>
<td>0.10</td>
</tr>
<tr>
<td>4</td>
<td>0.06</td>
<td>0.10</td>
</tr>
<tr>
<td>5</td>
<td>0.09</td>
<td>0.17</td>
</tr>
<tr>
<td>6</td>
<td>0.06</td>
<td>0.21</td>
</tr>
<tr>
<td>7</td>
<td>0.09</td>
<td>0.19</td>
</tr>
<tr>
<td>8</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>9</td>
<td>0.17</td>
<td>0.15</td>
</tr>
<tr>
<td>10</td>
<td>0.16</td>
<td>0.18</td>
</tr>
<tr>
<td>11</td>
<td>0.17</td>
<td>0.22</td>
</tr>
<tr>
<td>12</td>
<td>0.20</td>
<td>0.24</td>
</tr>
</tbody>
</table>

Ad-hoc reflection is that there might be an influence of the US inflation uncertainty on that of Canada. If the US inflation uncertainty affects, possibly with some lag, Canadian uncertainty, a natural way to proceed would be to model Canadian inflation jointly with the US inflation and analyse the Canadian inflation forecast uncertainty conditionally on that of the US.

3. **MEASURING THE DEPENDENCE BETWEEN UNCERTAINTIES**

We traditionally define the observations on the *ex-post* forecast uncertainty for the forecast horizon \(h \) made at time \(t-h \) as the rolling sequence of pseudo out-of sample forecast errors (see e.g. Stock and Watson, 2007). These forecasts are usually obtained from a time series econometric model and possibly adjusted for variance predictability. Under the assumptions of stationarity and ergodicity of these errors, we assume that they stand for realisations of a random variable, denoted by \(U^i_{t,h} \), where \(i \) represents the \(i \)-th country. Univariate distributions of this random variable are discussed in Charemza, Díaz and Makarova (2015).

We consider the bivariate *ex-post* forecast uncertainty for countries \(1 \) and \(2 \), \(U_{t,h} = \left(U^{(1)}_{t,h}, U^{(2)}_{t,h}\right) \), given by:

\[
U_{t,h} = \frac{1}{2} \sum_{i=h}^{h} \left(\pi_i - \pi_{t-h} \right),
\] (1)
where π_t is the bivariate vector containing the inflation in both countries in period t, π_{t-h} is the vector containing the corresponding forecasts made at time $t-h$ for the period t, $\Sigma_{t,h}$ is the unconditional covariance matrix of the h step ahead forecast errors at time t and Σ_{t-h} is the conditional covariance matrix made at time $t-h$ for time t. The variable $U_{t,h}$ is, then, net of all information available at the time of making the forecast regarding its first two moments. The bivariate density of $U_{t,h}$ is denoted as $D(0, \Sigma_{t,h})$. The unconditional distributions of $U_{t,h}^{(1)}$ and $U_{t,h}^{(2)}$ can be approximated by a variety of statistical distributions, starting from the seminal two-piece normal distribution, TPN (see e.g. Tay and Wallis, 2000, Wallis, 2004), to the generalized beta distribution (Clements, 2014) and weighted skew normal distribution, WSN (Charemza, Díaz and Makarova, 2015). Unfortunately, the analytical forms of the bivariate distributions mentioned above might not be of much use here (even if they were known). Firstly, the dependence between forecast uncertainties might be different for lower and upper tails of their distributions and, for the policy analysis, asymmetric dependences of macroeconomic indicators might be of particular interest.

Secondly, due to, for instance, different monetary policies pursued by countries 1 and 2, types of the unconditional distributions might be different. For instance, country 1, which implements inflation targeting successfully, might have the distribution of inflation forecast errors well described by the WSN distribution, while country 2, which pursue a different policy, might have the empirical distribution of forecast errors better described by the TPN distribution.

In the light of these difficulties, we propose to evaluate the bivariate density of $U_{t,h}$ defined by (1) by approximating the unconditional densities using a univariate parametric density and then modelling the dependency using copulas. Let F_1 and F_2 be the unconditional cumulative distribution functions (cdf’s) of the uncertainties in both countries and f_1 and f_2 the corresponding probability density functions (pdf’s). We can obtain the joint cdf as

$$F_{12}(x_1, x_2) = C[u_1, u_2; \theta],$$

where $u_1 = F_1(x_1)$, $u_2 = F_2(x_2)$ with $x_1, x_2 \in \mathbb{R}$ and $C:[0,1]^2 \rightarrow [0,1]$ is a copula function which depends on parameter θ. Sklar’s (1959) Theorem shows that if both unconditional cdf’s are continuous then, the copula is unique, so that $C(\cdot, \cdot)$ can be considered a cdf itself (we limit our interest here to one-parameter copulas). Also, if the copula is twice differentiable, we can define $c(u_1, u_2 | \theta) = \partial^2 C(u_1, u_2 | \theta) / \partial u_1 \partial u_2$ as the density function of the copula and, differentiating (2), we can express the joint density of (1) as

$$f_{12}(x_1, x_2) = c(u_1, u_2; \theta) \times f_1(x_1) \times f_2(x_2).$$

Although the copula parameter θ can be estimated jointly with the parameters of the unconditional distributions by the maximum likelihood directly from (3), this can be numerically awkward if the unconditional distributions are difficult to estimate. Because of that we use the Inference Function for Margins (IFM) approach described in Joe and Xu (1996). This is a two-steps estimation method which consists of:

1. estimating the parameters of the density functions of the unconditional distributions;
2. estimating the copula parameter by the maximum likelihood by plugging in the probability integral transforms (pit’s) of the marginals into the copula density (3). For the details of the algorithms see Durrelman, Nikeghbali and Roncalli (2000).

Finally, developing from the joint density of uncertainties (3), we can evaluate the density of inflation uncertainty in country 1 conditional on inflation in country 2 being in a certain range \([a, b]\) around its point forecast as

\[
f_{1|2} (x_1 | a \leq x_2 \leq b) = \frac{\int_a^b f_{12}(x_1, x_2)dx_2}{\int_a^b f_2(x_2)dx_2}.
\]

Knowledge of (4) can be of a relevant practical importance. In particular, policy makers in country 1 can assess the probabilities related to changes in monetary policy in country 2, for instance, the probability of hitting the inflation target band. More generally, they can evaluate the conditional term structure of inflation, which is changes in uncertainty with the changes in forecast horizon (see Patton and Timmermann, 2011).

4. ESTIMATING UNIVARIATE FORECAST UNCERTAINTIES

Motivated by the puzzling lack of correlation between inflationary forecast errors and the EPU index for Canada, discussed in Section 2, we focus on the interrelations between the Canadian and US forecast uncertainties. The raw data we used are monthly data on annual CPI inflation in Canada and US from January 1985 until October 2014. As the Canadian inflation targeting is often discussed in terms of the core rather than headline inflation, we have also applied data on the core inflation for Canada\(^2\). Inflation in both countries has been found to be \(I(1)\); therefore the model has been estimated in first differences, using 358 observations in total. The first recursion is made with 80 observations, which gives 278 one step ahead forecast errors, 257 two-step ahead errors, etc.

In each recursion, for the time period until \(t−h\), in order to account for second order predictability, the two-equation VAR-BEKK-GARCH(1,1) model for the Canadian and US inflation with seasonal dummies in its deterministic part has been estimated (for the discussion of the assumptions and properties of the BEKK-GARCH model and its comparison with other multivariate GARCH models see e.g. Silvennoinen and Teräsvirta, 2009). The autoregressive order of the model had been chosen as the minimal for which the residuals’ autocorrelation is not significant at 5% significance level. In order to avoid spurious dependence between the corresponding \(h\)-step-ahead forecast errors for \(h > 1\), forecasts have been made from the moving average rather than autoregressive form of the model (see e.g. Lütkepohl, 2007, p. 94). Forecasting gives \(h\)-step ahead forecast errors \(e_{it-h}\), up to \(h=24\) months. The conditional and unconditional variance-covariance matrices of \(e_{it-h}\), denoted in (1) as \(\Sigma_{it-h}\) and \(\Sigma_{t,h}\), have been estimated using variance-covariance matrices obtained for the estimated VAR-BEKK-GARCH(1,1) model. Then, using a rolling window of the length of 120, we have estimated 158 distributions of one-step-ahead forecasts for both countries, 157 of two-step-ahead forecasts and so on.

As the first step of the IFM estimation method is to evaluate the parameters of the unconditional distributions, we start with choosing the most appropriate distribution of the

marginals. As this is somewhat arbitrary, we have decided to choose from two distributions used for modelling forecast uncertainties, namely the two piece normal (TPN) distribution, see e.g. Tay and Wallis (2000), and Wallis (2004), and the weighted skew normal (WSN) distribution; see Charemza, Díaz and Makarova, (2015). Parameters of both distributions can be interpreted in the context of policy effects. The TPN has the density function with three parameters and is defined by

\[
f_{\text{TPN}}(t; \sigma_1, \sigma_2, \mu) = \begin{cases}
A \exp\left\{-(t-\mu)^2 / 2\sigma_1^2\right\} & \text{if } t \leq \mu \\
A \exp\left\{-(t-\mu)^2 / 2\sigma_2^2\right\} & \text{if } t > \mu
\end{cases},
\]

where \(A = \left(\frac{\sqrt{2\pi} (\sigma_1 + \sigma_2)}{2}\right)^{-1} \). If \(\sigma_1^2 = \sigma_2^2 \) it becomes normal and the deviations from normality (that is the differences between the estimates of \(\sigma_1 \) and \(\sigma_2 \)) are interpreted as the effects of the balance of risks given by over- and underestimated forecasts (see Wallis, 2004). WSN is the 5-parameters’ distribution, with the density function given, after normalization \(U^* = U / \sigma \), where \(\sigma \) is the standard deviation of \(U \), as:

\[
f_{\text{WSN}}(t; \alpha, \beta, m, k, \rho) = \frac{1}{\sqrt{A_y}} \phi\left(\frac{t}{\sqrt{A_y}}\right) \Phi\left(B_y t - mA_y\right) + \frac{1}{\sqrt{A_y}} \phi\left(\frac{t}{\sqrt{A_y}}\right) \Phi\left(-B_y t + kA_y\right),
\]

\[
+ \phi(t) \phi\left(\frac{m - \rho t}{\sqrt{1 - \rho^2}}\right) - \Phi\left(\frac{k - \rho t}{\sqrt{1 - \rho^2}}\right),
\]

where \(\phi \) and \(\Phi \) denote the density and cumulative distribution functions of the standard normal distribution respectively, \(A_y = 1 + 2\tau_\rho + \tau^2 \), and \(B_y = \tau + \rho \). If \(\alpha = \beta = 0 \), WSN reduces to normal distribution. In the general case, parameters \(\alpha < 0 \) and \(\beta < 0 \) can be interpreted as the effects of the anti- and pro-inflationary policy respectively in reducing inflation uncertainty, \(m \) and \(k \) represent the tolerance level to the nuisance (not strong enough) forecast signals coming from outside of the model and \(\rho \in (0,1) \) describes the degree of accuracy of these forecast signals (see Charemza, Díaz and Makarova, 2015).

It is shown that the maximum likelihood estimation of skew normal distributions can be subject to bias and convergence problems (see e.g. Pewsey, 2000, Monti, 2003). Therefore, the estimation procedure applied here is the Simulated Minimum Distance Estimator (SMDE) method of Charemza et al. (2012). The SMDE is defined as

\[
\hat{\omega}_n^{\text{SMDE}} = \arg \min_{\omega \in \Omega} \left\{ \xi \left\{ \text{HD}(d_n, f_{1,\omega}) \right\}^R_{r=1} \right\},
\]

where \(\omega \in \Omega \subset \mathbb{R}^k \), \(f_{1,\omega} \) is the Monte Carlo approximation of the theoretical probabilities of the estimated distribution obtained from \(R \) replications for each combination of parameters within the admissible area, \(d_n \) denotes the density of empirical sample of size \(n \), \(\text{HD} \) is the distance measure and \(\xi \) is an aggregation operator. This method, albeit relatively slow and not very precise (as it relies on the accuracy of the grid search algorithm applied), does not, however, suffer from convergence problems. The distance measure chosen here is the Hellinger distance (see e.g. Basu, Shioya and Park, 2011) which is known to be robust to outliers. In order to make results comparable, three parameters have been estimated for each
distribution: σ_1^2, σ_2^2 and μ for the TPN and α, β and σ, with three remaining parameters fixed as $\rho = 0.75$ and $m = -k = 1$.

Detailed estimation results, for all forecast horizons and all rolling windows, are available at http://pramu.ac.uk. Selection of unconditional distributions has been made using the forecast accuracy tests, also available at http://pramu.ac.uk. The tests applied are: (1) the Cramer-von Mises test of uniformity of the probability integral transforms (pit’s), Järque-Bera test of normality of pit’s transformed to normality (see Berkowitz, 2001) and, (3) the Amisano and Giacomini (2007) test for direct comparison of the distributions. Results of all these tests almost universally support the superiority of WSN over TPN for both Canada and US. Consequently, we base further investigation on using WSN as the unconditional distributions for both countries.

5. COPULA ESTIMATION AND CONDITIONAL FORECASTING

Once the unconditional distributions of uncertainties are decided, we model the joint density as in (3). We have experimented with a number of different copula functions, and have finally decided to use Frank’s copula as it is capable of modelling strong asymmetric dependence between non normal skewed distributions, without favouring neither the upper nor lower tail (for some discussion of the properties of Frank’s copula see e.g. Assunção, 2004, Lin and Wu, 2015). The expressions of this copula and its density are, respectively

$$C(u_1, u_2; \theta) = -\theta^{-1}\log([\eta - (1 - e^{-\theta u_1})(1 - e^{-\theta u_2})]/\eta),$$

$$c(u_1, u_2; \theta) = \theta \eta e^{-\theta(\eta + u_1)} / [\eta - (1 - e^{-\theta u_1})(1 - e^{-\theta u_2})]^2,$$

where the copula parameter $\theta \in [0, +\infty)$ and $\eta = \theta - 1$. Following the IFM procedure, we estimate the copula parameter by maximizing

$$\sum_{t=1}^{T} \log c(u_{1t}, u_{2t}; \theta).$$

The conditional density can be then evaluated using (4) for the pairs of observations on uncertainties separately for each forecast horizon. As the natural and easily interpretable condition we set the bands of inflation in the US as $2\% \pm 1\%$, that is around the 2% of US inflation target. The 2% target for inflation has been officially set in January 2012, but in practice was used earlier in the form of the ‘desired inflation’. In Canada the 2% inflation target was established in late 1995. Figure 1 shows inflation in Canada and US with the $\pm 1\%$ bands indicated.

Figure 1: CPI Inflation in Canada and US, January 1992–October 2014

Usually the term structure of inflation forecast is expressed by the sequence of standard deviations of uncertainty for each forecast horizon (see Clements, 2014). However, we have decided to express it by the average (across rolling windows) probabilities of the Canadian
inflation being within the target bands. In the context of inflation targeting this seems to be a natural and more easily interpretable measure.

Let us denote by \(\hat{f}_1(t) = f_{\text{WSN}_{a,t}}(t; \hat{\alpha}^{(t)}, \hat{\beta}^{(t)}, \hat{\sigma}^{(t)}, -\hat{\sigma}^{(t)}, 0.75) \) the estimated WSN density function where; and \(\hat{\alpha}^{(t)}, \hat{\beta}^{(t)}, \hat{\sigma}^{(t)} \) are the SMD estimates of the WSN parameters for Canada \((\tau = 1) \) and U.S. \((\tau = 2) \). The corresponding cdf's are denoted by \(\hat{F}_1(t) \). The unconditional probabilities of the Canadian inflation being within the \([a,b]\) range, where \(a = 1 \) and \(b = 3 \), are:

\[
\int_a^b \hat{f}_1(x) \, dx,
\]

The (conditional) probabilities of the Canadian inflation being within the \([a,b]\) range, where \(a = 1 \) and \(b = 3 \), given that the US inflation be within the \([1,3]\) are, following (3) and (5), given by:

\[
\int_a^b \int_a^b c \left(\hat{F}_1(x_1), \hat{F}_2(x_2); \hat{\theta} \right) \hat{f}_1(x_1) \hat{f}_2(x_2) \, dx_1 \, dx_2,
\]

where \(\hat{\theta} \) is the estimated parameter of the Frank’s copula.³

Table 2 gives, in columns (1) and (5), the averaged unconditional probabilities of inflation being in the \([1,3]\) interval and, in columns (2) and (6), conditional probabilities for selected forecast horizons, for the headline and core inflation in Canada respectively. Standard errors are reported in brackets below the averages. In columns (3), (4), (7) and (8) the corresponding rudimentary sharpness measures of forecasts are given (see Gneiting, Balabdaoui and Raftery, 2007; and Mitchell and Wallis, 2011). The idea of sharpness measures is such that the density forecast should be concentrated around the realized value (observed ex-post) if the model forecasts accurately. The measure used here is the average (unconditional or conditional) probability of the Canadian inflation being within the \([1,3]\) band computed for the cases where inflation (ex-post forecast realization) actually was within this band. For a 'sharp' forecast, such measure should be higher than the corresponding unconditional and conditional probabilities.

All probabilities in Table 2 decline monotonously with the increase in the forecast horizon, indicating a typical forecast term structure (or fan chart) pattern, where the uncertainty increases with the increase in the forecast horizon. The conditional probabilities are, as expected, higher than the corresponding unconditional ones. The differences diminish with the increase in the forecast horizon, indicating some sort of convergence of the unconditional and conditional distributions. This is also illustrated in Figure 2, where the probabilities are plotted for all forecast horizons up to 24. The sharpness measure is, in most cases greater than the corresponding probabilities. Standard deviations for all probabilities are relatively high, particularly for shorter forecast horizon. This might indicate changes in parameters of the estimated distributions over time.

³ Programming have been made in GAUSS 12 and computations performed on the high powered parallel computer HPC ALICE at the University of Leicester. Computational details and codes are available from the authors.
Table 2: Average probabilities of inflation in Canada being in the interval $[1, 3]$%

<table>
<thead>
<tr>
<th>for. hor</th>
<th>headline inflation</th>
<th>core inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>uncond. prob.</td>
<td>cond. prob.</td>
</tr>
<tr>
<td>3</td>
<td>0.69 (0.32)</td>
<td>0.73 (0.33)</td>
</tr>
<tr>
<td>6</td>
<td>0.62 (0.26)</td>
<td>0.67 (0.27)</td>
</tr>
<tr>
<td>9</td>
<td>0.58 (0.22)</td>
<td>0.62 (0.22)</td>
</tr>
<tr>
<td>12</td>
<td>0.53 (0.20)</td>
<td>0.58 (0.19)</td>
</tr>
<tr>
<td>15</td>
<td>0.50 (0.17)</td>
<td>0.52 (0.17)</td>
</tr>
<tr>
<td>18</td>
<td>0.48 (0.16)</td>
<td>0.49 (0.17)</td>
</tr>
<tr>
<td>21</td>
<td>0.45 (0.15)</td>
<td>0.46 (0.14)</td>
</tr>
<tr>
<td>24</td>
<td>0.43 (0.14)</td>
<td>0.44 (0.14)</td>
</tr>
</tbody>
</table>

The probabilities obtained for core inflation uncertainty are markedly higher than that for the headline inflation uncertainty. Also, the differences in the conditional and unconditional probabilities are greater for core rather than headline inflation, particularly for shorter forecast horizons. On the one hand, it confirms that the core rather than headline inflation has been efficiently targeted. On the other hand, however, it indicates that the effects of the U.S. inflation uncertainty onto the Canadian core inflation uncertainty is greater than that on the headline. As the U.S. inflation is outside the reach of the Canadian monetary policy, it suggest a possible way of improvement in setting up an effective inflation indicator for Canada, which should be net of the U.S. inflation effects. High probabilities of hitting the band close to the inflation target, both unconditional and conditional, confirms the rationale of the way Bank of Canada constructs its core inflation measure.

Figure 2: Average conditional and unconditional probabilities of hitting the $[1\%-3\%]$ inflation band in Canada
With the use of the conditional and unconditional probabilities of inflation being within the \([a,b]\) range it is possible to forecast effectively the inflation targeting precision. Figure 3 shows plots of such conditional probabilities for Canada for forecast horizons 2 and 7 plotted alongside the simple measure of precision of inflation targeting, defined as the absolute value of the difference between the headline inflation and target inflation (that is, 2%). Forecast has been shifted backwards by one horizon, so that the two-steps ahead probabilities are plotted against inflation observed in time \(t+h-1\), that is, are treated as one-step ahead forecasts. Analogously, the seven-steps ahead probabilities are treated as six-steps ahead forecasts. For the sake of plot clarity, we have plotted the complements of the conditional probabilities to one, that is the probabilities that inflation is outside the \([1\%,3\%]\) range rather than inside.

Figure 3: Inflation targeting precision in Canada and the conditional probabilities of inflation being outside the \([1\%,3\%]\) range, January 2003-December 2013

The plots show reasonable accuracy in explaining deviations of inflation from target, even of the reasonably large horizon. The short-term forecast of the probabilities has not missed the relevant large deviations and the longer-term forecast, with probabilities approaching unity for large deviations from target in January-March 2003 and May-September 2008.

Results discussed above can also be used for constructing an uncertainty measure that, unlike the squares of the ARMA-GARCH forecast errors (see Table 1) correlates with the EPU index. It can be formulated as a squared forecast error scaled by the odds of the U.S. inflation being outside the \([1\%,3\%]\) zone, expressed by the unconditional probabilities. Denoting such measure as \(um_{t,h}\), we can write it as

\[
um_{t,h} = \left(U_{t,h}^{(1)} \times \frac{1 - \int_a^b \hat{f}_2(x_2) \, dx_2}{\int_a^b \hat{f}_2(x_2) \, dx_2} \right)^2, \text{ where } a = 1 \text{ and } b = 3.
\]

and, as before Canada and U.S are denoted by 1 and 2 respectively. The intuition here is such that and increased odds for uncertainty in U.S. being outside the range affects positively the Canadian uncertainty. As such information is might find its way to the media (but not to the VAR-BEKK-GARCH model directly), such correction should increase the correlation of the new uncertainty measure with the EPU index. Table 3 gives the Spearman’s rank correlation measures of \(um_{t,h}\) with EPU for \(h = 1,2,\ldots,12\).
Table 3: Spearman’s rank correlation coefficients between EPU and $u_{t, a}$

<table>
<thead>
<tr>
<th>f.hor</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.09</td>
<td>0.11</td>
<td>0.22</td>
<td>0.39</td>
<td>0.31</td>
<td>0.36</td>
</tr>
<tr>
<td>f.hor</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>0.41</td>
<td>0.42</td>
<td>0.38</td>
<td>0.42</td>
<td>0.37</td>
<td>0.37</td>
</tr>
</tbody>
</table>

Legend: coefficients not significant at the 10% significance level are boldfaced. P-values used for testing have been obtained by simple bootstrap.

The rank correlation coefficients for forecast horizons of 1 and 2 remain insignificant, as they are for some other countries listed in Table 1. However, for longer forecast horizons, the coefficients become significant, which is in line with the results of correlation of EPU with inflation forecast uncertainty for other countries.

6. CONCLUSIONS

We managed to shed a new light on puzzling absence of correlation of the inflation forecast uncertainty and the economic policy uncertainty index. We argue that the presence of dependence between such uncertainties between countries might cause such effect. For such cases we propose a new method for constructing an inflation term structure. The method is conceptually simple, albeit computationally awkward. Its application can lead to an improvement in foreseeing uncertainty related to inflation and enables computation of term structure relatively to the performance of another country, or economic alliance. It also suggests a potentially new way of computing uncertainty measures. We exemplify the concept by the analysis of the Canadian inflation forecast term structure, but our technique can also be applied, for instance, for evaluating the inflation forecast term structure for the European Union countries outside the Eurozone relatively to the policy of the European Central Bank. For Canada, the results look promising. It has been possible to forecast effectively the deviations of inflation from its target using conditional and unconditional ex-ante probabilities of inflation being within a certain band around the target. The results also confirm the rationale for using core inflation in inflation targeting and suggest a way of eliminating the effect of external inflation uncertainty onto such measure.
REFERENCES

