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Abstract

Vector autoregressive (VAR) models are the main work-horse model for macroeconomic

forecasting, and provide a framework for the analysis of complex dynamics that are present

between macroeconomic variables. Whether a classical or a Bayesian approach is adopted,

most VAR models are linear with Gaussian innovations. This can limit the model’s ability to

explain the relationships in macroeconomic series. We propose a nonparametric VAR model

that allows for nonlinearity in the conditional mean, heteroscedasticity in the conditional

variance, and non-Gaussian innovations. Our approach differs to that of previous studies

by modelling the stationary and transition densities using Bayesian nonparametric methods.

Our Bayesian nonparametric VAR (BayesNP-VAR) model is applied to US and UK macroeco-

nomic time series, and compared to other Bayesian VAR models. We show that BayesNP-VAR

is a flexible model that is able to account for nonlinear relationships as well as heteroscedas-

ticity in the data. In terms of short-run out-of-sample forecasts, we show that BayesNP-VAR

predictively outperforms competing models.
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1 Introduction

Introduced by Sims (1980), vector autoregressive (VAR) models provide a systematic way

of capturing the dynamics and interactions of multiple time-series. In its basic form, the

L-lag VAR model represents a p-dimensional vector of variables measured at time t, yt =

(yt,1, . . . , yt,p)
′, as a linear combination of past realisations,

yt = µ+B1yt−1 + . . .+BLyt−L + et (1)

where {Bl}Ll=1 are (p×p)-dimensional matrices of unknown coefficients, and et = (e1,t, . . . , ep,t)
′

is a (p × 1)-dimensional innovation vector with distribution N(0,Σ). VAR models have

emerged as a benchmark for the analysis of dynamic macroeconomic problems. The linear

representation of the variables’ joint dynamic behaviour facilitates the study of the effects of

shocks (such as monetary and fiscal policy shocks) through computation of response func-

tions, and forecast error variance decompositions (see Lucas, 1980; Pagan, 1997; Stock and

Watson, 1999; Diebold and Rudebusch, 2001).

Despite their popularity, there have been criticisms of the use of VAR models in macroeco-

nomic analysis. When p is large there is the risk of overfitting the data which leads to im-

precise inference and erratic model forecasts. In addition, the linearity, stationarity, Gaussian

innovations and constant conditional mean and variance of these models can be considered

unrealistic. For example, empirical evidence suggests that macroeconomic variables may

have nonlinear relationships (see Granger and Terasvirta (1994)), the nature of shocks may

not be Gaussian (Weise (1999)), and the effects of these shocks may not be linear (see Ravn

and Sola (2004) and Matthes and Barnichon (2015) for monetary policy studies, and Sörensen

et al. (2001), Auerbach and Gorodnichenko (2013), Baum and Koester (2011), and Gambacorta
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et al. (2014) for fiscal policy studies).

In the last two decades these criticisms have been addressed by: using adaptations of the

parametric model given in equation (1) such as regime switching and threshold crossing be-

haviour, introducing time varying coefficient models with or without stochastic volatility,

and, more recently, using nonparametric methods and considering non-Gaussian innova-

tions. Both regime switching and threshold models are motivated by empirical evidence that

many macroeconomic time series behave differently during different time periods (for exam-

ple, in economic downturns and in expansions) which are often called regimes. Both models

assume that there are a small number of regimes which can be accurately modelled by VAR’s.

The mechanisms for the change between regimes is the key difference between the two ap-

proaches. Hamilton (1989) popularised Markov-switching regression where the change in

regimes is driven by latent (unobservable) stochastic variables, usually with a Markov struc-

ture. Literature on these models has subsequently grown, see e.g. Hansen (1992), Chib (1996),

Chauvet (1998), Kim and Nelson (1999), Kim et al. (2005), and Sims and Zha (2006). Beaudry

and Koop (1993), Teräsvirta (1994), Potter (1995), and Pesaran and Potter (1997) popularised

vector threshold autoregressive (VTAR) and vector smooth transition autoregressive (VSTAR)

models. Unlike Markov-switching regressions, regime changes in a VTAR model occur if

some function (often, a linear function) of the observable macroeconomic variables crosses

a threshold. Whereas VSTAR uses a weighted average of VAR models where the weighting

depends on a continuous, non-linear function of the previous lags. For a comprehensive sur-

vey see Hubrich and Teräsvirta (2013). In contrast, time varying vector autoregressions are a

class of models in which the system’s conditional mean and/or variance are allowed to vary

over time. This is achieved by modelling the VAR parameters (coefficients and innovation

covariance matrix) with a linear time series model, often a random walk or an AR(1) process.

Notable work in this area is presented in Stock and Watson (1996, 2001, 2002), Cogley and

Sargent (2001, 2005a), and Primiceri (2005). See Koop and Korobilis (2010) for a recent review
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of these methods. An alternative approach to modelling the joint dynamic behaviour are

nonparametric methods. Härdle et al. (1998) proposed a vector conditional heteroskedastic

autoregressive nonlinear model where both the conditional mean and variance are unknown

functions of past observations. Hamilton (2001) developed a flexible parametric regression

model where the conditional mean has a linear parametric component and a potential non-

linear component represented by an isotropic Gaussian random field. Dahl and Gonzalez-

Rivera (2003a,b) extended his model to non-Gaussian random fields, while Jeliazkov (2013)

models the conditional mean using a Bayesian hierarchical representation of generalised ad-

ditive models, where a “smoothness prior” is given to the nonparametric function of the

vector of a past realisations. The use of non-Gaussian innovations is linked to structural VAR

models where the computation of impulse response functions requires identification of the

structural errors. Hyvärinen et al. (2010), Moneta et al. (2013), and Lanne et al. (2017) use

independent component analysis where they assume mutual independence across the non-

Gaussian innovation processes and represent the residuals (obtained when estimating the

VAR model) as linear mixtures of these. Lanne and Lütkepohl (2010) model the innovations

using a mixture of two Gaussian distributions, whereas Jeliazkov (2013) uses the Student

t-distribution.

Geweke and Keane (2007) state that answering interesting questions in economics, from

macroeconomic policy to the evaluation of economic welfare, often requires the entire con-

ditional distribution p(y|x). In this paper, we introduce a novel stationary model for multi-

variate time series where the stationary and transition densities are directly modelled using

Bayesian nonparametric methods, which place a prior on an infinite dimensional parameter

space and adapt their complexity to the data (see Hjort et al., 2010, for a book length review of

Bayesian nonparametric methods). The Bayesian nonparametric approach to density estima-

tion requires a prior on distributions with random smooth densities. We use a Dirichlet pro-

cess mixture (DPM), the most popular of these priors, which is an infinite mixture model, with
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the Dirichlet process as the mixing measure. There are several advantages to using Bayesian

nonparametric methods. Unlike classical nonparametric methods, there is no need to tune

any smoothing parameters. Uncertainty in the unknown density can be expressed through

the posterior. The out-of-sample predictive performance of models where the conditional

density is estimated using the Bayesian nonparametric approach is superior to other com-

petitive models, see Norets and Pati (2017). Adopting the DPM prior, allows us to construct

a mixture of VAR’s which can be viewed as a multivariate mixture-of-experts. Introduced

by Jacobs et al. (1991) and Jordan and Jacobs (1994), mixture-of-experts models focus on es-

timating the conditional predictive density p(y|x) for all x where y is univariate (discrete or

continuous) and x a high dimensional set of covariates. They are extensions of mixture regres-

sion models that allow for covariates in the mixture weights. Geweke and Keane (2007) and

Villani et al. (2009) provide extensive analyses when the mixture components are Gaussian,

whereas Villani et al. (2012) allow for distributions outside the exponential family to repre-

sent the mixture components. In our Bayesian nonparametric mixture of VARs, the mixing

weights of the transition density depend on the previous lags allowing different component

transition densities to be favoured at different times (for example, in expansionary and con-

tractionary periods) based on lagged observed values. Intuitively, we can view each mixture

component (“expert”) as a regime with changes of regime determined by the lagged values

(through the mixing weights). Our Bayesian nonparametric VAR model allows for nonlinear-

ity in the conditional mean, heteroskedasticity in the conditional variance, and non-Gaussian

innovations. We tackle over-parameterisation and the danger of overfitting in two ways, via

a prior on the number of mixture components and by modelling the dependence within each

component with a prior favouring a simple correlation structure. We find that our approach

produces better forecasts (particularly at longer time horizons) when compared to the widely

used time varying parameter models with stochastic volatility (TVP-SV-VAR) .

The paper is organised as follows: Section 2 introduces the Bayesian non-parametric VAR
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(BayesNP-VAR) model, describes its construction and considers some of its properties. Sec-

tion 3 provides an overview of the required Markov chain Monte Carlo (MCMC) method for

fitting this model (the full steps of the MCMC sampler are described in Appendix A). Sec-

tion 4 illustrates the ability of the BayesNP-VAR model to identify regimes and changes in

regimes using simulated data, provides an empirical illustration using US macroeconomic

time series, and compares the out-of-sample predictive performance of the BayesNP-VAR to

the parametric BVAR and TVP-VAR-SV using both US and UK macroeconomic series. Section

5 summarises our findings and conclusions.

2 The Bayesian non-parametric vector autoregressive

(BayesNP-VAR) model

We construct a multivariate time series model in which the stationary and transition densi-

ties are infinite mixtures. Antoniano-Villalobos and Walker (2016) define such a model for a

univariate stationary time series. Their prior has full support for the transition density and

stationary density (i.e. any transition density and stationary density can be represented arbi-

trarily well by the prior). We extend their work to multivariate stationary time series and we

call our model Bayesian nonparametric VAR (BayesNP-VAR).

The transition densities of the BayesNP-VAR model are derived from a joint distribution for

yt and its L lags yLt which is expressed as an infinite mixture. This ensures that the stationary

distribution is known and also has the form of an infinite mixture. Specifically, the joint

density of yt and its L lags yLt is

p(yt, y
L
t ) =

∞∑
j=1

wj k(yt, y
L
t |θj) (2)

where k(yt, y
L
t |θj) is a ((L + 1)p) - dimensional probability density function which does not

depend on t and θj are the locations of the mixture components with θj
iid∼ H . We assume
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that k(yt−i, . . . , yt−i−κ|θj) for i = 0, . . . , L− κ and κ = 0, . . . , L− 1 depends on κ only (which

can be achieved by assuming that k(yt, y
L
t |θj) is the joint distribution of a stationary pro-

cess) to ensure that the overall process is stationary. The mixture weights wj are defined as

w1 = v1, wj = vj
∏
m<j(1 − vm), and vj

iid∼ Be(1,M). Assuming that the locations θj are

independent of the weights, wj , the model in (2) defines a Dirichlet process mixture (Sethu-

raman, 1994). The distribution of the locations, H , is often referred to as the “base measure”,

the choice of which determines the likely location of the components. The parameter M con-

trols the relative values of the weights. The expectation of the jth weight is E[wj ] = Mj−1

(M+1)j

and so, as M increases, the average size of the j weight becomes smaller and the number of

components with non-negligible weights becomes larger. Choosing a prior for M is key to

controlling the number of components and avoiding overfitting, we discuss this choice later

in this section.

The joint density in (2) leads to a transition density that is also an infinite mixture with the

following form:

p(yt|yLt ) =
p(yt, y

L
t )

p(yLt )
=

∑∞
j=1wj k(yt, y

L
t |θj)∑∞

j=1wj k(yLt |θj)
(3)

=

∞∑
j=1

ωj(y
L
t ) k(yt|yLt , θj)

where k(yt|yLt , θj) is the transition density of the jth component and ωj(yLt ) =
wj k(yLt |θj)∑∞

k=1 wk k(yLt |θk)

is the weight of the jth component which depends on previous lags, the key feature of our

model. We can therefore refer to the transition density as a multivariate mixture of experts.

Mixtures of experts are extensions of smooth regression models and popular within the ma-

chine learning community. They are used in regression to estimate the conditional density

p(y|x) of a univariate y for all values of a (often, high-dimensional) covariate x, using mix-

tures where the component weights depend on a x, see Jacobs et al. (1991), Jordan and Jacobs

(1994), Geweke and Keane (2007) and Villani et al. (2012). The weights of the transition den-

sity in equation (3) depend on the observed lagged values which allows different component
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transition densities to be favoured in different periods. For example, expansionary and re-

cessionary periods could have different transition densities. In our time series model, each

component (“expert”) can be viewed as a regime with changes of regime determined by the

observed lagged values.

To complete the BayesNP-VAR we need to choose k(yt, y
L
t |θj). Firstly, we find it easier to

write yt = µ + Sεt where µ is a p-dimensional location vector and S = diag(s1, . . . , sp) is

a scaling matrix. Then k(yt, y
L
t |θj) =

(∏p
j=1 sj

)−(L+1)
kε(S

−1(yt − µ), (S−1 ⊗ IL)(yt − 1Lµ))

where kε is the joint density of εt, εLt . We propose a model which has a structure similar to a

factor model and divides the variation of the data into a part which describes the dependence

between variables and a part which is idiosyncratic to each variable. The assumed form is

kε(εt, ε
L
t ) = N(0(L+1)p, B+Q) where 0(L+1)p is a (L+1)p-dimensional vector of 0’s,B describes

the dependence between variables over time and Q describes the idiosyncratic variation over

time. The form of B is

B =

q∑
z=1

Pz ⊗ (Λ·,zΛ
T
·,z)

where

Pz =



1 ρz . . . ρLz

ρz 1 . . . ρL−1
z

...
...

. . .
...

ρLz ρL−1
z . . . 1


,

−1 < ρz < 1 for z = 1, . . . , q and Λ is a (p× q)-dimensional matrix of loadings. The matrix Q

is

Q =



Σ0 Σ1 Σ2 . . . ΣL

Σ1 Σ0 Σ1 . . . ΣL−1

Σ2 Σ1 Σ0 . . . ΣL−2

...
...

...
. . .

...

ΣL ΣL−1 ΣL−2 . . . Σ0


,
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where Σl = diag
(
ρ?

l

1
ξ1
,
ρ?

l

2
ξ2
, . . . ,

ρ?
l

p

ξp

)
for l = 1, . . . , L, −1 < ρ?k < 1 and ξ−1

k ∼ Ga(ν/2, ν/2)

for k = 1, . . . , p. This leads to a suitable choice of k(yt, y
L
t ) for the BayesNP-VAR model to be

stationary. The marginal distribution is kε(εt) = N
(
0,ΛΛT + diag(ξ−1

1 , ξ−1
2 , . . . , ξ−1

p )
)

and so

the marginal distribution of yt is N
(
µ, SΛΛTST + diag(s2

1ξ
−1
1 , s2

2ξ
−1
2 , . . . , s2

pξ
−1
p )
)
.

The component-specific parameters in the mixture model are θ = (µ, S,Λ, ρ, ρ?, φ, δ) where

ρ = (ρ1, . . . , ρq), ρ? = (ρ?1, . . . , ρ
?
p) and δ = (δ1, . . . , δq). We assume that µ, S, Λ, ρ, ρ?, φ, and δ

are a priori independent with distribution H which has density,

h(µ, S,Λ, ρ, ρ?, φ, δ) = hµ(µ)× hS(S)× hΛ(Λ)× hρ?(ρ?)× hρ(ρ)× hφ(φ)× hδ(δ).

The parameters µ and S are given informative prior densities to avoid the mixture model

placing mass in areas which are not plausible. We choose hµ(µ) = N(µ|µ0,Σ0). Both param-

eters can be chosen with prior information but we use the data dependent choices µ0 = ȳt,

and Σ0 = 1.52Σ̂, where ȳt, and Σ̂ are sample mean and covariance matrix of yt in the empir-

ical examples in this paper. This choice leads to a prior for µ which is slightly overdispersed

relative to the distribution of the data, and so the components are located in regions within

or close to the data. For the (p × p)-dimensional scaling matrix, S = diag(s1, s2, . . . , sp), we

choose the hierarchical prior

s−1
i

ind.∼ Ga(as, ζi(as − 1)), ζi
iid∼ Ga(1, 5).

The hyperparameter ζi is shared by all components and is an estimate of the overall scale

of the i-th variable. This hierarchical structure allows different components to have similar

scales, the si’s, for each variable.

We use the multiplicative gamma process shrinkage prior of Bhattacharya and Dunson (2011)

for Λ. This allows the complexity of B to adapt to the data. Under this prior, Λi,z
iid∼

N(0, φ−1
i,z τ

−1
z ), for i = 1, . . . , p and z = 1, . . . , q where φi,z ∼ Ga(ν/2, ν/2) and τz =

∏z
i=1 δi

with δ1 ∼ Ga(1, 1) and δz ∼ Ga(3, 1) for z ≥ 2. The δz’s are independent, and the τz’s are
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viewed as the global shrinkage parameters of the columns, while φi,z’s are the local shrink-

age parameters for the zth column. As value of δz increases, so does the value of τz favouring

smaller values of Λi,z .

The parameters ρ and ρ? control dependence across time in both B and Q. We choose in-

dependent uniform priors on the range that implies stationarity and positive autocorrelation

to give hρ(ρ) =
∏q
z=1 U(ρz|0, 1) and hρ?(ρ?) =

∏p
i=1 U(ρ?i |0, 1) where U(ρ|0, 1) represents the

density of a uniform distribution between 0 and 1. For the prior of M , the parameter control-

ling the number of components, we choose the standard exponential distribution. We find

that this choice strikes a balance between having too many and/or too few components.

3 Inference in Bayesian NP-VAR

The likelihood function can be derived from the transition in (3) to be defined as

T∏
t=L+1

p(yt|yLt ).

Bayesian inference is complicated by the infinite sum in both the numerator and denominator

which precludes the direct use of Markov chain Monte Carlo methods. Antoniano-Villalobos

and Walker (2016) describe a Gibbs sampler for their univariate model but truncate the cen-

tring distribution for the stationary variance of each component away from zero. To avoid

this truncation, we use an adaptive truncation method introduced by Griffin (2016) which

adaptively truncates the infinite sum in the numerator and denominator and tends to avoid

large truncation errors in the posterior. We define a truncation of the infinite model in (2) with

K mixture components which leads to a truncated transition density which has the form

pK(yt|yLt ) =

∑K
j=1wjk

(
yt, y

L
t |θj

)∑K
j=1wjk

(
yLt |θj

) (4)
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where wj = Vj
∏
m<j(1 − Vm) and Vj

iid∼ Be(1,M) and θj
iid∼ H . This finite mixture model

defines a sequence of posteriors of the form

πK(θ1:K , η1:K |y) ∝ pK(θ1:K , η1:K)
T∏

t=L+1

pK(yt|yLt )

where η1:K = (V1:K , ζ,M). The adaptive truncation method of Griffin (2016) uses an MCMC

algorithm to sample from the posterior, πK0(θ1:K0 , η1:K0 |y), for a user-defined starting value,

K0, and then uses a sequential Monte Carlo method to sample from the sequence of posterior

distributions πK0+1(θ1:(K0+1), η1:(K0+1)|y), πK0+2(θ1:(K0+2), η1:(K0+2)|y), . . . , πD(θ1:D, η1:D|y)

where D is chosen to avoid large truncation errors. The adaptive truncation scheme follows

the algorithm below.

1. Simulate a sample of size N using the MCMC sampler from πK0(θ1:K0 , η1:K0 |y) which

will be denoted
(
θ

(1)
1:K0

, η
(1)
1:K0

)
, . . . ,

(
θ

(N)
1:K0

, η
(N)
1:K0

)
and set K = K0 + 1

2. Simulate
(
θ

(i)
K , φ

(i)
K , V

(i)
K

)
from their prior distribution for i = 1, . . . , N .

3. Evalulate

ψi =
πK

(
θ

(i)
1:K , η

(i)
1:K |y

)
πK−1

(
θ

(i)
1:(K−1), η

(i)
1:(K−1)|y

) , i = 1, . . . , N

4. Evalulate

ESSK =
(
∑N

i=1 ψi)
2∑N

i=1 ψ
2
i

5. If ESSK < cN (we use c = 0.5) then generateN values where
(
θ

(i)
K , η

(i)
K

)
is sampled with

probability proportional to ψi. Set ψi = 1 for i = 1, . . . , N and run one iteration of the

MCMC sampler updating
(
θ

(i)
1:K , η

(i)
1:K

)
from πK (θ1:K , η1:K |y) for i = 1, . . . , N .

6. Let ∆K = |ESSK − ESSK−1|. If ∆K ≤ ε, ∆K−1 ≤ ε and ∆K−2 ≤ ε terminate (we choose

ε equal to 0.001N). Otherwise, set K = K + 1. and return to step 2.

Full details of the MCMC algorithm are provided in Appendix A. The MCMC algorithm uses

two types of adaptive Metropolis-Hastings algorithm which are briefly reviewed here. The

first is the adaptive random walk Metropolis-Hastings algorithm (Atchadé and Rosenthal,
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2005) with a normal proposal whose variance is updated during the running of the chain.

Suppose that σ2
t is the proposal variance used at iteration t, then the proposal variance at

time t + 1 is σ2
t+1 = σ2

t + t−0.6(αt − 0.234) where αt is the acceptance probability in the

Metropolis-Hastings algorithm at the t-th iteration. Atchadé and Rosenthal (2005) show that

this algorithm is ergodic. The second algorithm is Adaptive scaling within the Adaptive

Metropolis-Hastings (ASWAM) algorithm (Andrieu and Moulines, 2006; Atchadé and Fort,

2010). This is suitable for updating multiple parameters jointly. Suppose we wish to sample

a parameter, λ, then the proposed value λ′ at the t-th iteration is

λ′ ∼ N(λ, s2
tΣt)

where st is a scalar and Σt is the sample covariance matrix of the first t− 1 sampled values of

λ. The scale st is updated using the recursion st+1 = st + t−0.6(αt − 0.234) where, again, αt is

the acceptance probability of the Metropolis-Hastings algorithm at the t-th iteration.

4 Illustrations

In this section we apply the BayesNP-VAR model to both simulated and empirical data. Our

aim is to demonstrate that our model identifies economic regimes where shocks are transmit-

ted in different ways, that it clearly indicates changes between regimes, and provide evidence

of the model’s good out-of-sample predictive performance.

To provide a point estimate of our mixture model, we approximate the posterior mode by

selecting the MCMC sample which has the highest posterior density value. We refer to this as

the posterior modal sample. This allows us to illustrate the model’s ability to correctly iden-

tify regimes by producing time plots showing how the weights in the mixture model in (3)

change over time and to highlight the component/regime which is favoured in a particular

time period (by finding the component with the highest posterior weight). Since the transi-

tion density within each component is a VAR model, we also plot impulse response functions
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(IRF) to a unit shock in a chosen variable for each component to understand the different

ways that shocks are transmitted under different components/regimes. The usual methodol-

ogy for generating IRFs is used which involves a polynomial function of the estimated VAR

parameters.

The posterior mode is useful for presenting the inference from our model but it ignores pos-

terior uncertainty. To provide IRF’s which include posterior uncertainty, we also produce the

IRF’s suggested by Koop et al. (1996) which we will refer to as Generalised IRF’s (GIRF’s).

These are used to study the effect of a shock of size υ at time t on the state of the system at

time t+ n, given that there are no other shocks to the system after time t. They are defined as

follows:

GIy (n, υ, Yt−1)

= E [Yt+n|et = υ, et+1 = 0, . . . , et+n = 0, Yt−1]− E [Yt+n|et = 0, et+1 = 0, . . . , et+n = 0, Yt−1]

(5)

for n = 1, 2, 3, . . ., where et, et+1, . . . , et+n represent the arbitrary shocks at times t, t + 1, . . . ,

t + n and the expectations are taken conditional on the parameter values. This allows us to

look at posterior distributions of GIy (n, υ, Yt−1) to assess uncertainty in their estimation.

For the out-of-sample predictive performance illustration we calculate the log-predictive score

(LPS) for all the variables (using their joint predictive distribution) and for each variable sepa-

rately (using their marginal predictive distribution). We also calculate the root mean squared

error (RMSE) for each variable. The joint LPS is given by

−
T−h∑
i=s

log p(yi+h|y1, . . . , yi) (6)

where T is the size of the time series, s is the time from where the prediction starts, and h is

the predictive horizon. Similarly, the marginal LPS for the j-th variable is given by

−
T−h∑
i=s

log p(yi+h,j |y1, . . . , yi). (7)

13



The RMSE of the j-th variable is given by√√√√ 1

T − h− s+ 1

T−h∑
i=s

(yi+h,j − E(yi+h,j |y1, . . . , yi))2. (8)

For both measures, smaller scores indicate better predictive performance. We looked at h = 1,

2, and 4 months. We compare the out-of-sample predictive performance of our BayesNP-

VAR model with other Bayesian VAR specifications: the stationary BVAR model with the

independent Normal-Wishart prior (with either one, two, three or four lags), and the non-

stationary non-linear TVP-VAR model with stochastic volatility (TVP-SV-VAR) of Primiceri

(2005) (with one lag). The BayesNP-VAR was chosen to have one lag.

4.1 Simulated data

The following simulated example illustrates the ability of the BayesNP-VAR to correctly iden-

tify regimes and the timing of regime switches. We generated data from a threshold VAR(2)

model with p = 3 variables and 500 time points. The data had two regimes and followed the

VAR in Regime 1 if yt−1,1 > 0 and Regime 2 otherwise. The two regimes were

• Regime 1

yt =


1.8

0.52

0.29

+


0.5 0.15 0

0.20 0.34 0

0.03 0.05 0.24

 yt−1 +


0.15 0.20 0.80

0.14 −0.18 0.30

0.07 −0.03 0.14

 yt−2 + et

with covariance matrix,

Σ1 =


0.28 0.03 0.07

0.03 0.29 0.14

0.07 0.14 0.36


• Regime 2

yt =


−1.8

0.32

0.12

+


0.6 −0.05 0.2

0.20 0.09 0

0.05 0 0.42

 yt−1 +


0.21 −0.10 0.05

0.07 0.32 0

0.06 −0.02 0.45

 yt−2 + et

14



with covariance matrix,

Σ2 =


0.54 0.06 0.02

0.06 0.46 0.24

0.02 0.024 0.56

 .
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Figure 1: Plots identifying the two regimes of the simulated threshold VAR(2) series. Top panel displays

the three series (left-series 1, middle-series 2 and right-series 3) and highlights (in cyan) the regime. The

dashed line at zero in the series 1 plot is the threshold. Bottom panel displays the non-negligible weight

of that regime.
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Figure 1 displays plots of the three simulated series and some results for the posterior modal

sample which identifies two components with non-negligible mixing weights. The top row of

each plot shows the time series for each variable and periods for which a component has the

highest weight. The second row of plots shows the weight for that regime (and is the same

for all variables). The threshold is indicated by a dashed line and was set at yt−1,1 = 0. We

can clearly see that the estimated regimes change correctly as the value of yt−1,1 changes. The

second row displays the weight of the regime and we can see that the regimes are correctly

identified with probability close to 1.

We also simulated a VAR(2) model with p = 3 variables and 500 time points with the spec-

ification given in Appendix B. We do not display the results here but our model is able to

correctly identify that there is only one regime. Both simulated threshold VAR(2) and VAR(2)

data are used in Section 4.3 as part of our out-of-sample forecasting exercise.

4.2 Empirical Examples

4.2.1 Data sets

We constructed two macroeconomic data sets, one for the US and one for the UK, based on

the series described and transformations carried out in Carriero et al. (2015). Both data sets

include seasonally adjusted monthly time series, the sample period for the US is from 1st

January 1959 to 1st August 2016, and for the UK from 1st January 1978 to 1st February 2015.

The US series were collected from the Federal Reserve Bank of St Louis (FRED) and UK series

from the Organisation for Economic Cooperation and Development (OECD). Details of the

variables together with the transformations used are displayed in Table 1 for the US and Table

2 for the UK respectively. We include the series in both growth rates and levels.

For the illustrations in Sections 4.2.2 and 4.2.3 we used the US data, in growth rates. For the

out-of-sample predictive exercise we have used both the US and UK data in growth rates and

levels.
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Table 1: US data; Source: FRED

Name Description Growth rates Levels

UNRATE Unemployment Rate none none

PCEPI Personal Consumption Expenditure Index: 2009=100 1200 ln( yt
yt−1

) 1200 ln(yt)

PAYEMS Total non-farm payroll, thousands of persons 1200 ln( yt
yt−1

) 1200 ln(yt)

FEDFUNDS Federal funds rate none none

INDPRO Industrial Production Index: 2012=100 1200 ln( yt
yt−1

) 1200 ln(yt)

LTIR Long term interest rate none none

Table 2: UK data; Source: OECD

Name Description Growth rates Levels

UNRATE Unemployment Rate none none

CPI Consumer price Index: 2010=100 1200 ln( yt
yt−1

) 1200 ln(yt)

STIR Short term interest rate none none

INDPRO Industrial Production Index: 2010=100 1200 ln( yt
yt−1

) 1200 ln(yt)

LTIR Long term interest rate none none

4.2.2 Component/Regime identification

Applying our BayesNP-VAR model to the US data in growth rates, we identify eight mix-

ture components, and here we present the six which had the largest non-negligible weights.

Figures 2, 3 and 4 display results for the six distinct components. The first two rows show

the time series for each variable with the component/regime with the largest mixture weight

and the weight for that component/regime is plotted over time (in the bottom row). The first

regime, which we named, stable inflation (PCEPI-growth) and output (INDPROD) growth,

covers periods of sustained growth and includes "The Great Moderation" of the mid-1980’s to

the mid-2000’s, a period when volatility of business cycle fluctuations was low. The second

component identifies periods after recent stock market crashes, caused by the burst of the
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’Dot.com’ bubble and the collapse of the US housing market respectively. These are periods

of very low federal funds rates and long term interest rates with fairly stable growth and de-

clining unemployment rate. These are in line with the National Bureau of Economic Research

(NBER) peak to trough periods of March 2001 to November 2001, and November 2007 to

June 2009 respectively. The "Golden Era" of US capitalism, the period up to the early 1970’s,

is captured by the third component, whereas the fourth component captures the period of

mid 1981 to 1984 of the "Volcker disinflation". The last two components identify two of the

worst recessions in the US where output growth was in decline and unemployment rapidly

increasing. The "US housing crisis" of 2007 is captured by the fifth component, and the "Oil

Shock" of the early 1970’s is captured by the sixth component. The difference between the two

is that the latter was characterised by high inflation.

4.2.3 Impulse Response Functions

Each component of our BayesNP-VAR model follows a VAR and so we can produce compo-

nent/regime dependent IRF’s as polynomial functions of the estimated VAR parameters. All

IRF’s look at 60 months ahead. Figure 5 and Figure 6 display these IRFs for each component

using a different colour for each. The colour scheme is: blue for the first component, red for

the second, green for the third, yellow for the fourth, cyan for the fifth and pink for the sixth

component. Recall that periods of stable inflation and output growth are in the first compo-

nent, periods after the stock market crashes of 2001 and 2007 are in the second, the "Golden

Era" periods in the third, the "Volcker disinflation" periods in the fourth, the periods of the US

housing crisis in the fifth and the 1970’s "Oil shock" is the sixth component. We centre our

IRF’s around the study of monetary policy. Figure 5 displays the IRF’s of inflation (panel (a)),

output growth (panel (b)), and unemployment rate (panel (c)) to a 1% increase in the federal

funds rate. It is clear that the IRF’s are regime dependent with the transmission of the mon-

etary policy shock differing between periods of expansion, stability and recession. Inflation

eventually goes down and output growth declines in the two crisis periods of 1973 and 2007,
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Component 1: Stable inflation and output growth

Component 2: After recent stock market crashes
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Figure 2: Plots identifying the first and second components of the US data in growth rates. First two

rows of each set of nine plots display the time series highlighting (in cyan) the component/regime, and

the third row displays the non-negligible weight of the respective regime.
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Component 3: Golden era
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Component 4: Volcker disinflation
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Figure 3: Plots identifying the third and fourth components of the US data in growth rates. First two

rows of each set of nine plots display the time series highlighting (in cyan) the component/regime, and

the third row displays the non-negligible weight of the respective regime.
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Component 5: The 2007 housing market crash
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Component 6: The 1973 oil crisis
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Figure 4: Plots identifying the fifth and sixth components of the US data in growth rates. First two rows

of each set of nine plots display the time series highlighting (in cyan) the component/regime, and the

third row displays the non-negligible weight of the respective regime.
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whereas the monetary policy shock has small effect on inflation during the periods after the

stock market crashes of 2001 and 2007, Volcker’s chairmanship and the "Golden Era". During

periods of relative stability inflation and output growth increase marginally before remain-

ing at a constant level. The unemployment rate response steadily increases for the "Golden

Era" and 2007 crisis, is relatively flat for the “Oil shock” and “Volcker disinflation” regimes,

and declines for the component identifying the periods after the stock market crashes of 2001

and 2007, and the component identifying periods of relative economic stability. Figure 6 dis-

plays the IRF’s of the federal funds rate to a 1% increase in inflation (panel (a)) and to a 1%

increase in unemployment rate (panel (b)). During the Volcker disinflation regime, the rate

reacts quickly to both an inflationary and an unemployment shock, though the length of time

before stabilising is longer for the latter (20 rather than 10 months). A similar pattern can be

seen in the "Golden Era" regime, however the response to the unemployment shock is more

prolonged with a sharp decline for the first 5 months. The rate response to the inflationary

shock is not as extreme. When it comes to the other four regimes the inflationary shock has

little impact, but the unemployment shock leads to a steady decline in the federal funds rate

in the period of stable inflation and output growth, and to a marginal decline for the first 5

months before levelling off for the 2007 US housing crisis regime.

Figures 7 and 8 display the GIRF’s (see equation 5) with their 95% credible intervals for in-

flation and unemployment rate after a 1% increase in the federal funds rate at two different

dates. The dates chosen for comparison are June 1981 and December 2007, the former because

it is representative of Paul Volcker’s chairmanship of the Fed and the latter because it is the

beginning of the US housing crisis. Figure 7 displays the response of inflation (panel (a)) and

unemployment (panel (b)), over a 60 month period, to a 1% permanent increase in the Federal

funds rate occurring in June 1981. There is no evidence of an effect. Figure 8 draws the same

graphs for a 1% increase in the Federal funds rate occurring in December 2007. There is clear

evidence of an increase in inflation with the median response being a 0.5% increase. There is
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evidence of a negative effect on unemployment with the median effect close to zero, but the

lower credible interval shows that a 1% drop in unemployment is plausible.
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Figure 5: IRF’s to a 1% increase in federal funds rate. (a) Inflation response, (b) Industrial production

growth response, and (c) Unemployment response. Blue - component 1, Red - component 2, Green -

component 3, Yellow - component 4, Cyan - component 5, and Pink - component 6.
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Figure 6: (a) Federal funds rate response to a 1% increase in inflation, (b) Federal funds rates response

to a 1% increase in unemployment rate. Blue - component 1, Red - component 2, Green - component 3,

Yellow - component 4, Cyan - component 5, and Pink - component 6.

4.3 Out-of-sample predictive performance

We compare the out-of-sample predictive performance of the BayesNP-VAR model with other

Bayesian VAR specifications: the stationary BVAR model with the independent Normal-

Wishart prior (with one, two, three or four lags), and the non-stationary, non-linear TVP-VAR

model with stochastic volatility (TVP-SV-VAR) of Primiceri (2005) (with one lag). Our com-
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Figure 7: GIRF of inflation response (a) and GIRF of unemployment rate response (b) to a 1% increase

in federal funds rate. We look at 60 months ahead and the shock starts June 1981. Solid line is the 50th

percentile and dashed line the 95% credible interval.

(a) (b)

0 10 20 30 40 50 60
-0.5

0

0.5

1

1.5

2

0 10 20 30 40 50 60
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 8: GIRF of inflation response (a) and GIRF of unemployment rate response (b) to a 1% increase in

federal funds rate. We look at 60 months ahead and the shock starts December 2007. Solid line is the 50th

percentile and dashed line the 95% credible interval.

parison metrics are the log-predictive scores described in equations 6 and 7 and the root mean

squared error in equation 8. We used two simulated (from threshold VAR(2) and VAR(2)

models) and four real data sets (US and UK data in growth rates and levels). We consider

three predictive horizons: 1 month, 2 months and 4 months, and look at 48 months out-of-

sample. This means that for the US data the prediction starts on 1st September 2012, and for

the UK data on 1st March 2011.

Tables 3 and 4 display the log-predictive scores and the RMSE’s for the simulated VAR(2)

data and simulated threshold VAR(2) data respectively. The BayesNP-VAR(1) outperforms
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the TVP-SV-VAR(1) for all predictive horizons both for all variables jointly and each variable

marginally, in both the threshold VAR(2) and VAR(2) simulated data. In the VAR(2) data, the

overall log-predictive scores and the RMSE’s for the BVAR(1) and the BayesNP-VAR(1) are

comparable at all horizons. In the threshold VAR(2) data, the BayesNP-VAR(1) has the lowest

overall log-predictive scores. It also outperforms BVAR(1) at horizon 2, and 4 for all variables

and horizon 1 for variable 1.

Tables 5, 6, 7 and 8 display the log-predictive scores and the RMSE’s for the growth rates

of the US and UK data respectively. The BayesNP-VAR(1) is on average the model with the

better out-of-sample predictive performance for both data sets. The BayesNP-VAR(1) model

outperforms the TVP-SV-VAR(1) for all forecasting horizons in both the overall and marginal

log-predictive scores, and RMSE’s with the US growth rates data. In terms of overall log-

predictive scores it is slightly outperformed by the BVAR(3) at horizon 1, but it provides su-

perior overall log-predictive scores for the longer time horizons of 2 and 4 months than any of

the alternative models. The BayesNP-VAR outperforms the BVAR models for most variables

at horizons 1, 2 and 4 in log predictive scores and for all variables, except unemployment rate,

at all horizons with RMSE. In the case of the UK growth rates, the BayesNP-VAR(1) outper-

forms the other models for the overall and marginal log-predictive scores and RMSE for all

horizons and all variables (with a few exceptions).

Tables 9, 10, 11 and 12 display the log-predictive scores and RMSE’s for the levels of the US

and UK data respectively. Once again, the BayesNP-VAR(1) model produces better over-

all and marginal log-predictive scores and RMSE’s for all time horizons when compared to

the TVP-SV-VAR(1) for both the US and UK data. When compared to the BVAR models, it

performs better on the UK data. In the US data, the BayesNP-VAR(1) model outperforms

BVAR(1) overall for horizons 1 and 2 but not horizon 4. The BVAR(1) and BayesNP-VAR(1)

model each produce better predictions for some variables but there is no clearly superior

model for all variables for log predictive scores but BayesNP-VAR(1) outperforms BVAR(1)
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for all variables with RMSE.

To summarize the BayesNP-VAR(1) outperforms the TVP-SV-VAR(1) for all predictive hori-

zons, in both the simulated and empirical data sets. The non-stationary TVP-SV-VAR ac-

counts for nonlinearity in the conditional mean, and heteroskedasticity in the conditional

variance and therefore one would expect it to be better suited to capturing the nonlinear dy-

namic relationships between variables, leading to better predictive performance. However,

for all data sets considered, it is often outperformed by BVAR models. This may be due to

fact that the TVP-SV-VAR does not separate the non-linearity in the conditional mean and

heteroskedasticity from non-stationarity, which can be a problem when yt is a stationary pro-

cess. The transition density of the TVP-SV-VAR depends on the mean µt and the covariance

Σt which are modelled by non-stationary processes. Therefore, when this transition density

is not appropriately chosen then the TVP-SV-VAR will not do a good job in approximating

the real transition density.

5 Discussion

This paper introduces a new approach to modelling multivariate time series. Using Bayesian

nonparametric methods, we have shown how we can express both marginal and transition

densities as infinite mixtures, leading to a flexible stationary model that allows for non-

linearity in the conditional mean, heteroskedasticity in the conditional variance, and non-

Gaussianity. Our empirical results, for both US and UK data, as well as simulated data,

indicate that the BayesNP-VAR model outperforms TVP-SV-VAR at all time horizons and

shows substantial improvements over BVAR at most time horizons and data sets. The em-

pirical results illustrate that it is useful to allow changes in mixture components to depend

on the observed lagged values. However, our model assumes stationarity, which is a strong

assumption about macroeconomic data. There may be benefits in terms of predictive power

from relaxing this assumption by allowing both marginal and transition densities to vary over
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Table 3: Log-predictive scores and RMSEs for the simulated VAR(2) data

Model Horizon Joint and marginal scores RMSEs

Overall Var1 Var2 Var3 Var1 Var2 Var3

BVAR(1) 1 123 49 42 47 0.52 0.58 0.62

2 135 44 48 50 0.57 0.65 0.69

4 138 50 52 51 0.70 0.73 0.72

BVAR(2) 1 127 40 42 47 0.55 0.58 0.63

2 138 44 48 50 0.60 0.66 0.69

4 141 50 52 51 0.71 0.74 0.74

BVAR(3) 1 129 41 43 50 0.55 0.59 0.67

2 142 50 50 52 0.63 0.70 0.73

4 145 51 53 52 0.73 0.78 0.76

BVAR(4) 1 134 43 44 50 0.60 0.62 0.68

2 150 48 52 53 0.70 0.76 0.74

4 150 52 54 52 0.78 0.82 0.76

BayesNP-VAR(1) 1 125 39 43 47 0.51 0.57 0.61

2 133 44 48 50 0.57 0.63 0.69

4 136 49 51 50 0.69 0.73 0.72

TV-SV-VAR(1) 1 170 47 63 71 0. 63 0.68 0.68

2 177 50 80 78 0.58 0.96 0.82

4 193 61 87 87 6.17 8.83 6.75

27



Table 4: Log-predictive scores for simulated threshold VAR(2) data

Model Horizon Joint and marginal scores RMSEs

Overall Var1 Var2 Var3 Var1 Var2 Var3

BVAR(1) 1 305 74 97 60 1.08 1.83 0.86

2 335 92 97 67 1.33 1.56 0.93

4 361 95 109 63 1.43 1.72 0.96

BVAR(2) 1 276 75 82 47 1.42 1.73 0.85

2 338 94 78 50 1.71 1.46 0.93

4 341 96 85 51 1.46 1.55 0.97

BVAR(3) 1 291 77 77 63 1.38 1.89 0.97

2 322 94 74 68 1.57 1.84 1.04

4 323 94 82 56 1.44 1.69 0.96

BVAR(4) 1 297 78 81 65 1.42 2.08 1.07

2 313 97 83 68 1.59 2.13 1.19

4 332 96 82 59 1.46 1.99 1.11

BayesNP-VAR(1) 1 171 67 55 59 1.04 0.75 0.79

2 204 81 59 70 1.51 0.86 0.83

4 211 89 61 72 1.91 0.93 0.96

TV-SV-VAR(1) 1 195 69 64 67 1.01 0.75 0.79

2 229 88 71 79 1.52 0.91 0.97

4 244 102 76 86 2.39 1.23 1.54
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Table 5: Log-predictive scores for growth rates of US data

Model Horizon Joint and marginal scores

Overall FEDFUNDS INDPRO LTIR PAYEMS PCEPI UNRATE

BVAR(1) 1 314 13 159 -10 87 96 -23

2 391 30 157 10 90 98 -5

4 491 50 152 34 88 94 33

BVAR(2) 1 306 9 160 -10 82 95 -25

2 392 35 158 14 82 99 -11

4 540 75 152 50 85 95 15

BVAR(3) 1 301 8 159 -11 81 95 -25

2 387 36 158 15 81 99 -11

4 511 72 152 44 83 95 13

BVAR(4) 1 301 8 159 -10 81 95 -25

2 392 36 158 16 81 98 -11

4 511 72 152 45 83 95 13

BNP-VAR(1) 1 322 52 109 39 48 52 22

2 335 51 107 38 47 51 21

4 321 58 102 36 45 49 20

TV-SV-VAR(1) 1 332 48 120 38 50 63 16

2 351 54 119 45 51 64 21

4 367 62 121 50 55 65 26
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Table 6: RMSEs for growth rates of US data

Model Horizon RMSEs

FEDFUNDS INDPRO LTIR PAYEMS PCEPI UNRATE

BVAR(1) 1 0.117 5.91 0.153 0.93 1.71 0.148

2 0.189 5.92 0.238 0.83 1.88 0.199

4 0.307 6.04 0.326 0.87 1.77 0.251

BVAR(2) 1 0.130 6.33 0.161 0.73 1.72 0.145

2 0.233 6.46 0.254 0.66 1.96 0.184

4 0.390 6.58 0.359 0.70 1.86 0.214

BVAR(3) 1 0.125 6.23 0.163 0.75 1.69 0.144

2 0.209 6.41 0.249 0.70 1.92 0.182

4 0.343 6.66 0.323 0.69 1.84 0.204

BVAR(4) 1 0.127 6.17 0.166 0.76 1.69 0.144

2 0.217 6.39 0.255 0.74 1.92 0.185

4 0.385 6.65 0.336 0.72 1.91 0.209

BayesNP-VAR(1) 1 0.026 4.94 0.153 0.69 1.67 0.159

2 0.043 5.05 0.232 0.67 1.81 0.228

4 0.061 5.10 0.328 0.74 1.76 0.332

TV-SV-VAR(1) 1 0.098 6.39 0.180 0.70 1.99 0.179

2 0.163 6.24 0.322 0.71 2.41 0.278

4 0.731 13.99 0.797 2.22 7.00 2.565
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Table 7: Log-predictive scores for growth rates of UK data

Model Horizon Joint and marginal scores

Overall CPI INDPRO LTIR STIR UNRATE

BVAR(1) 1 254 121 183 -1 7 -48

2 338 120 181 20 23 -25

4 485 115 173 55 41 23

BVAR(2) 1 235 116 182 -5 4 -55

2 356 114 180 23 29 -20

4 647 111 174 72 65 72

BVAR(3) 1 231 115 182 -5 4 -57

2 346 112 180 24 30 -32

4 608 111 173 66 64 60

BVAR(4) 1 224 114 182 -4 3 -61

2 327 111 180 24 29 -40

4 572 109 173 67 60 27

BayesNP-VAR(1) 1 168 104 145 -12 -42 -67

2 220 95 144 12 -22 -42

4 345 93 140 3 -27 -12

TV-SV-VAR(1) 1 353 81 142 49 55 29

2 368 79 142 54 62 35

4 389 81 143 61 68 42
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Table 8: RMSEs for growth rates of UK data

Model Horizon RMSEs

CPI INDPRO LTIR STIR UNRATE

BVAR(1) 1 3.24 10.19 0.20 0.058 0.076

2 3.58 10.52 0.35 0.108 0.130

4 3.51 10.32 0.58 0.205 0.237

BVAR(2) 1 2.87 9.94 0.18 0.123 0.069

2 2.89 10.22 0.32 0.224 0.115

4 3.06 10.46 0.56 0.364 0.199

BVAR(3) 1 2.75 9.94 0.18 0.126 0.070

2 2.75 10.22 0.33 0.248 0.104

4 3.00 10.42 0.56 0.417 0.169

BVAR(4) 1 2.64 9.96 0.20 0.131 0.062

2 2.54 10.21 0.37 0.253 0.092

4 2.70 10.50 0.65 0.509 0.159

BayesNP-VAR(1) 1 2.29 9.93 0.18 0.064 0.089

2 2.12 9.94 0.30 0.112 0.158

4 1.99 10.04 0.49 0.198 0.295

TV-SV-VAR(1) 1 2.57 14.33 0.19 0.084 0.087

2 2.07 15.23 0.32 0.148 0.126

4 2.11 13.59 0.59 0.542 0.380
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Table 9: Log-predictive scores for levels of US data

Model Horizon Joint and marginal scores

Overall FEDFUNDS INDPRO LTIR PAYEMS PCEPI UNRATE

BVAR(1) 1 327 14 159 -9 98 98 -20

2 489 30 173 8 118 119 -2

4 793 46 190 28 160 147 20

BVAR(2) 1 309 9 157 -10 88 94 -25

2 533 35 177 14 116 130 -7

4 1057 75 216 47 186 199 26

BVAR(3) 1 301 8 158 -11 82 94 -26

2 504 36 178 14 104 130 -12

4 967 69 216 42 170 201 16

BVAR(4) 1 298 8 157 -10 82 94 -27

2 505 36 177 16 102 132 -13

4 944 71 213 44 161 200 13

BayesNP-VAR(1) 1 290 -9 210 22 216 178 3

2 486 15 231 39 257 204 19

4 899 43 264 47 291 246 27

TV-SV-VAR(1) 1 930 41 280 36 262 298 14

2 963 51 285 42 266 303 19

4 996 58 292 47 275 312 25
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Table 10: RMSEs for levels of US data

Model Horizon RMSEs

FEDFUNDS INDPRO LTIR PAYEMS PCEPI UNRATE

BVAR(1) 1 0.112 4.91 0.149 1.73 1.78 0.160

2 0.215 7.12 0.223 3.38 2.84 0.229

4 0.400 11.01 0.306 6.67 3.76 0.330

BVAR(2) 1 0.126 5.59 0.161 1.23 1.67 0.143

2 0.222 8.41 0.251 2.39 2.94 0.194

4 0.336 13.10 0.335 5.00 4.16 0.259

BVAR(3) 1 0.125 5.73 0.159 0.91 1.68 0.138

2 0.212 8.97 0.239 1.47 2.97 0.177

4 0.273 14.82 0.305 2.94 4.17 0.203

BVAR(4) 1 0.128 5.52 0.168 0.86 1.68 0.136

2 0.211 8.53 0.255 1.33 3.01 0.174

4 0.318 13.90 0.309 2.49 4.29 0.199

BayesNP-VAR(1) 1 0.031 4.91 0.149 1.17 2.03 0.158

2 0.057 7.14 0.224 2.23 3.49 0.224

4 0.093 10.28 0.304 4.40 5.82 0.324

TV-SV-VAR(1) 1 0.032 5.53 0.159 1.43 2.26 0.154

2 0.056 8.96 0.260 5.85 12.35 0.205

4 0.131 10.35 0.372 7.52 9.70 0.274
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Table 11: Log-predictive scores for levels of UK data

Model Horizon Joint and marginal scores

Overall CPI INDPRO LTIR STIR UNRATE

BVAR(1) 1 313 128 184 -3 10 -8

2 620 171 197 16 27 116

4 1498 305 207 41 49 481

BVAR(2) 1 253 121 183 -6 3 -45

2 503 154 189 20 28 16

4 1261 250 194 54 61 239

BVAR(3) 1 236 118 181 -6 4 -53

2 430 145 188 21 29 -23

4 972 233 191 57 58 90

BVAR(4) 1 226 116 181 -6 4 -60

2 399 141 188 20 28 -38

4 853 230 190 54 56 42

BayesNP-VAR(1) 1 193 124 177 -13 -55 -46

2 329 155 199 19 -12 -19

4 561 190 210 59 19 34

TV-SV-VAR(1) 1 617 270 222 47 50 28

2 641 276 224 52 57 33

4 673 284 229 59 66 40
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Table 12: RMSEs for levels of UK data

Model Horizon RMSEs

CPI INDPRO LTIR STIR UNRATE

BVAR(1) 1 4.09 10.01 0.173 0.281 0.213

2 7.78 13.81 0.288 0.541 0.408

4 15.42 16.62 0.459 1.005 0.770

BVAR(2) 1 3.36 10.20 0.164 0.114 0.135

2 6.26 12.69 0.270 0.272 0.296

4 12.73 15.11 0.411 0.700 0.643

BVAR(3) 1 3.13 9.71 0.166 0.124 0.094

2 5.70 12.31 0.280 0.259 0.170

4 11.74 14.87 0.444 0.497 0.381

BVAR(4) 1 2.99 9.69 0.164 0.120 0.072

2 5.43 12.22 0.271 0.239 0.118

4 11.41 14.12 0.425 0.453 0.240

BayesNP-VAR(1) 1 2.81 9.30 0.172 0.039 0.085

2 4.89 11.96 0.285 0.074 0.149

4 9.00 12.65 0.442 0.137 0.271

TV-SV-VAR(1) 1 3.34 10.34 0.164 0.061 0.072

2 4.10 13.26 0.274 0.133 0.113

4 8.34 12.79 0.474 0.280 0.230
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time. We will investigate these types of models in future work.
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A Appendix: Gibbs sampler

We assume that data y1, . . . , yT are observed and we fit the model with L lags using the fol-

lowing Gibbs sampler. We use the renormalized stick-breaking construction of Griffin (2016)

with K atoms as our truncation. This implies a transition density of the form

p(yt|y(t−L):(t−1)) =

∑∞
j=1wjk

(
y(t−L):t|θj

)∑∞
j=1wjk

(
y(t−L):(t−1)|θj

)
where wj = Vj

∏
m<j(1− Vm) and Vj

iid∼ Be(1,M) for 1 ≤ k ≤ K and θj
iid∼ H .

Updating µ

The full conditional density of µj,i is proportional to

exp

{
−(µj,i − µ0,i)

2

2σ2
0,i

}
T∏

t=L+1

pK
(
yt|y(t−L):(t−1)

)
.

The parameter can be updated using an adaptive random walk Metropolis-Hastings sampler

where a normal proposal is used whose variance is tuned to have an acceptance rate 0.234.
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Updating S

The full conditional density of Sj,i is proportional to

s
−(1+αS)
j,i exp {−ζi(αS − 1)/sj,i}

T∏
t=L+1

pK
(
yt|y(t−L):(t−1)

)
.

The parameter can be updated using an adaptive random walk Metropolis-Hastings sam-

pler on the log scale where a normal proposal is used whose variance is tuned to have an

acceptance rate 0.234.

Updating ξ

The full conditional density of ξj,i is proportional to

ξ
ν/2−1
j,i exp

{
−ν

2
ξj,i

} T∏
t=L+1

pK
(
yt|y(t−L):(t−1)

)
.

The parameter can be updated using an adaptive random walk Metropolis-Hastings sam-

pler on the log scale where a normal proposal is used whose variance is tuned to have an

acceptance rate 0.234.

Updating ρ

The full conditional density of ρj,i is proportional to

T∏
t=L+1

pK
(
yt|y(t−L):(t−1)

)
.

The parameter can be updated using an adaptive random walk Metropolis-Hastings sam-

pler on a logit scale where a normal proposal is used whose variance is tuned to have an

acceptance rate 0.234.

Updating ρ?

The full conditional density of ρ?j,i is proportional to

T∏
t=L+1

pK
(
yt|y(t−L):(t−1)

)
.
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The parameter can be updated using an adaptive random walk Metropolis-Hastings sam-

pler on a logit scale where a normal proposal is used whose variance is tuned to have an

acceptance rate 0.234.

Updating Λ

The full conditional density of Λj,i,k is proportional to

exp

{
−1

2
Λ2
j,i,kτj,kφj,i,k

} T∏
t=L+1

pK
(
yt|y(t−L):(t−1)

)
.

The parameter can be updated using an adaptive random walk Metropolis-Hastings sampler

where a normal proposal is used whose variance is tuned to have an acceptance rate 0.234.

Updating φ

The full conditional distribution for φj,i,k is Ga ((ν + 1)/2, (ν + τj,kΛj,i,k)/2).

Updating δ

Let τ (h)
j,k =

∏k
t=1,t6=h δt. The full conditional distribution for δj,1 is

Ga

(
a1 + pq/2, 1 +

q∑
k=1

τ
(1)
j,k

p∑
i=1

φj,i,kλ
2
j,i,k

)
.

The full conditional distribution for δh, 2 ≤ k ≤ q is

Ga

(
a2 + p(q − h+ 1)/2, 1 +

q∑
k=h

τ
(h)
j,k

p∑
i=1

φj,i,kλ
2
j,i,k

)
.

Updating ζ

The full conditional distribution of ζi is Ga
(
KαS + κ1, (αS − 1)

∑K
j=1 sj,i + κ2

)
.
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Updating V

The full conditional density of Vj is proportional to

(1− Vj)M−1
T∏

t=L+1

pK
(
yt|y(t−L):(t−1)

)
.

The parameter can be updated using an adaptive random walk Metropolis-Hastings sam-

pler on the logit scale where a normal proposal is used whose variance is tuned to have an

acceptance rate 0.234.

Updating M

The full conditional distribution of M is Ga
(

1 +K, 1−
∑K

i=1 log(1− Vi)
)

.

B Appendix: Simulated VAR(2) specification

yt =


0.13

0.12

0.29

+


0.39 0.10 0.05

0.35 0.34 0.47

0.49 0.24 0.24

 yt−1 +


0.06 0.11 0.02

−0.19 −0.18 −0.01

−0.31 −0.13 0.09

 yt−2 + et

with covariance matrix,

Σ =


0.28 0.03 0.07

0.03 0.29 0.14

0.07 0.14 0.36


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