Continent debt and performance pricing in an optimal capital structure model*

Borys Grochulski Russell Wong
FRB Richmond

8th Summer Workshop
Narodowy Bank Polski
June 2019

* The views expressed herein are those of the authors and not necessarily those of the Federal Reserve Bank of Richmond or the Federal Reserve System.
Motivation: financial reorganization of firms

- In the U.S., corporate financial reorganization (Chapter 11) is much more common than liquidation (Chapter 7).
 - In a large sample of filings from 1995-2001, Bris et al (2006) find that 80% of cases were Chapter 11 reorganizations.
 - In Copustat data 1980-2014, Corbea and D’Erazmo (2017) find that 80% of bankruptcy exists were Chapter 11.

- Chapter 7 and 11 filers have different capital structures:
 - e.g., Corbea and D’Erazmo (2017) show that
 - Chapter 7 filers have lower income/assets,
 - Chapter 11 filers have higher leverage (debt/assets).

- Chapter 7 and 11 filers have different recovery rates and security values

- The choice of Chapter 7 and/or 11 bankruptcy is endogenous.

- Models needed to study positive and normative questions on reorganization vs liquidation.
Our model: optimal contract with agency frictions

- We build a model on the trade-off between agency costs and monitoring cost.
 - in the spirit of Jensen (1986) static analysis
 - we add monitoring to DeMarzo and Sannikov (2006) dynamic model
- Monitoring trade-off:
 - when monitored, no information frictions → no risk of liquidation
 - but monitoring entails direct costs (legal, operational, etc.)
- Key assumption: monitoring cannot be applied instantaneously, but only after a spell of search (of an uncertain duration)
 - filing preparation delay, search for debtor-in-possession financing
 - reorganization time, search for new agent needed to re-emerge
 - thus, monitoring and agency are states, not actions
 - search for a transition between agency and monitoring is an action
- Capital structure implementation with:
 - equity, long-term debt, revolving credit line (as in DS)
 - plus: contingent debt
 - plus: performance pricing on the credit line
Some related models

• Papers in the “structural” tradition of Merton and Leland, where debt is issued for its tax advantage:
 • Antill and Grenadier (2018) study leverage and debt pricing allowing for Chapter 11 and 7.
 • Manso et al. (2010) introduce performance-sensitive debt as a screening device for high-growth firms.

• Corbae and D’Erasmo (2017) estimate a GE model with Chapter 11 and 7, and evaluate a “fresh start” policy reform.

• Piskorski and Westerfield (2016) add monitoring to DS as a signal of diversion, which affects performance-based compensation but remains off equilibrium.

• Tchistyi (2016) shows that performance-pricing is a part of an optimal capital structure with correlated cashflows, as the incentive to divert increases when liquidation is nearer.
Outline

• Baseline model of DeMarzo and Sannikov.
• Extension with monitoring.
• Capital structure with contingent debt and performance pricing.
• Market values of securities.
• Comparative statics.
• Recap and next steps
Baseline model: DeMarzo-Sannikov

- A dynamic agency friction
 → liquidation becomes necessary (despite being ex-post inefficient)
- A firm’s cumulative cashflow up to date t, Y_t, follows

$$dY_t = \mu dt + \sigma dZ_t,$$

$\mu, \sigma > 0$ and Z_t is standard Brownian motion on (Ω, \mathcal{F}, P).
- A manager with limited liability is hired to run the firm
 - cumulative compensation process I_t is non-decreasing,
 - manager can divert cashflow to private use: 1 diverted \rightarrow private benefit of λ, where $0 < \lambda \leq 1$.
- Firm liquidation value: $L \geq 0$.
- Manager outside option value: $R \geq 0$.
- Contract: (τ, I_t), where
 - τ is the firm liquidation date (a stopping time)
 \rightarrow the manager is dismissed with outside option R.
Baseline model: payoffs

- Agent chooses a reporting process $d\hat{Y}_t \leq dY_t$ to maximize

$$\mathbb{E} \left[\int_0^\tau e^{-\gamma t} \left(dI_t + \lambda (dY_t - d\hat{Y}_t) \right) + e^{-\gamma \tau} R \right]$$

where $\gamma > 0$ is the time preference rate.

- Under an IC contract, $d\hat{Y}_t = dY_t$ at all t.

- The firm’s payoff is

$$\mathbb{E} \left[\int_0^\tau e^{-rt} (\mu dt - dI_t) + e^{-r\tau} L \right].$$

- The agent is impatient: $\gamma > r > 0$.
Baseline model: recursive representation

- State variable: the agent's continuation value: W_t.
- Representation:
 \[dW_t = \gamma W_t dt - dI_t + \beta_t (d\hat{Y}_t - \mu dt), \]
 where β_t is the sensitivity to the reported cash flow.
- Firm's profit function with just liquidation: $b_L(W_t)$.
- The contract is IC if $\beta_t \geq \lambda$ at all t.
- With $b_L(W_t)$ concave, $\beta_t = \lambda$.
- State variable dynamics under IC:
 \[dW_t = \gamma W_t dt - dI_t + \lambda \sigma dZ_t. \]
Baseline model: HJB and boundary conditions

- The option to pay the agent implies

 \[b'_L(W) \geq -1 \text{ for all } W. \]

- Agent payment threshold:

 \[W^1 \text{ defined as the lowest } W \text{ such that } b'_L(W) = -1. \]

- The HJB equation for \(b_L \):

 \[rb_L(W) = \mu + \gamma W b'_L(W) + \frac{1}{2} \lambda^2 \sigma^2 b''_L(W). \]

- Agent payment boundary:

 \[rb = \mu - \gamma W. \]

- Boundary conditions for \(b_L \)

 \[rb_L(W^1) = \mu - \gamma W^1, \quad b_L(W^1) = -1 \quad \text{and} \quad b_L(R) = L, \quad b'_L(R) = ? \]
Forward shooting
The profit curve with just liquidation
Model with monitoring: agency stage

- A firm’s cumulative cashflow up to date t, Y_t, follows

$$dY_t = \mu dt + \sigma dZ_t,$$

$\mu, \sigma > 0$ and Z_t is standard Brownian motion on (Ω, \mathcal{F}, P).

- A manager with limited liability is hired to run the firm
 - cumulative compensation process I_t is non-decreasing,
 - manager can divert cashflow to private use:
 $\$1$ diverted \rightarrow private benefit of $\$\lambda$, where $0 < \lambda \leq 1$.

- The firm can pay the flow cost $\kappa \geq 0$ to search for a transition to the monitoring stage:
 - when κ is being paid, transition to monitoring arrives with Poisson intensity $\rho > 0$,
 - if transition arrives, the manager is forced out, possibly with severance S_t.

- Contract: (τ, I_t, s_t, S_t), where
 - τ is the manager’s dismissal date,
 - $s_t \in \{0, 1\}$ is the indicator of searching.
Payoffs: agency stage

- Dismissal of the agent can be due to liquidation or transition to monitoring:
 \[
 \tau = \min\{\tau_M, \tau_L\}.
 \]

- Agent chooses a reporting process \(d\hat{Y}_t \leq dY_t\) to maximize
 \[
 \mathbb{E}\left[\int_0^\tau e^{-\gamma t} \left(dI_t + \lambda (dY_t - d\hat{Y}_t) \right) + 1_{\tau=\tau_L} e^{-\gamma \tau} R + 1_{\tau=\tau_M} e^{-r \tau} (R + S_t) \right]
 \]
 where \(\gamma > 0\) is the time preference rate, \(R > 0\) is outside option.

- Under an IC contract, \(d\hat{Y}_t = dY_t\) at all \(t\).

- The firm’s payoff is
 \[
 \mathbb{E}\left[\int_0^\tau e^{-rt} \left((\mu - s_t \kappa) dt - dI_t \right) + 1_{\tau=\tau_L} e^{-r \tau} L + 1_{\tau=\tau_M} e^{-r \tau_M} (M - S_t) \right]
 \]
 where \(M\) is the value of the firm entering the monitoring state.
Monitoring stage

- Firm run by expert/trustee → no agency frictions.
- Flow cost of monitoring and search for exit: $\kappa_B dt$.
- Firm finds a new agent and transitions back to the agency stage with Poisson intensity $\phi > 0$.
- Firm value in monitoring:

$$M = \mathbb{E} \left[\int_0^{\hat{\tau}} e^{-rt} (\mu - \kappa_B) dt + e^{-r\hat{\tau}} b_0 \right],$$

where $\hat{\tau}$ is the time of exit from monitoring, r is the discount rate, and b_0 is the value of starting out in agency with a new agent.

Integrating:

$$(r + \phi) M = \mu - \kappa_B + \phi b_0.$$

- Assumption: $\kappa_B \geq \mu$.
 Implication: $M < b_0$, i.e., monitoring is a costly state.
Recursive representation in the agency state

- State variable: the agent’s continuation value W_t.
- Representation:

$$dW_t = \gamma W_t dt - dI_t + \beta_t (d\hat{Y}_t - \mu dt) + s_t \Delta_t (dN_t - \rho dt),$$

where β_t is the sensitivity to the reported cash flow, Δ_t is the sensitivity to the switch to the monitoring state, N_t is a Poisson process with arrival rate $\rho > 0$.

- Firm’s profit function: $b(W_t)$.
- The contract is IC if $\beta_t \geq \lambda$ at all t. With $b(W_t)$ concave, $\beta_t = \lambda$.
State variable dynamics and HJB

- At all $t < \tau$ we have $dN_t = 0$ and $\Delta_t = R + S_t - W_t$, so

 $$dW_t = \gamma W_t dt - dI_t + \lambda \sigma dB_t + s_t(R + S_t - W_t)(0 - \rho dt),$$

i.e.,

 $$dW_t = ((\gamma + s_t \rho)W_t - s_t \rho (R + S_t))dt - dI_t + \lambda \sigma dB_t.$$

- The new terms are due to the risk of jump at dismissal.
 - changes to the slope and the level of the drift term

- The HJB equation for the firm’s value b is

 $$rb(W) = \max_{s, S} \left(\mu - s \kappa + ((\gamma + s \rho)W - s \rho (R + S))b'(W) + \frac{1}{2} \lambda^2 \sigma^2 b''(W) + s \rho (M - S - b(W)) \right).$$
Condition for search to be used

- Recall $b_L(W)$ as the value of the firm when liquidation is the only option, as in DS:

$$rb_L(W) = \mu + \gamma W b'_L(W) + \frac{1}{2} \lambda^2 \sigma^2 b''_L(W).$$

- Let $b_{L,0} = \max_W b_L(W)$.

- Let M_L be the value in the monitoring state if a transition to agency is followed by liquidation:

$$M_L = \frac{\mu - \kappa B}{r + \phi} + \frac{\phi}{r + \phi} b_{L,0}.$$

- Searching for a transition to monitoring will be chosen at least in some states iff

$$-\kappa + \rho (M_L - L) > 0.$$
LEMMA 1
Optimal severance is $S_t = 0$ at all t.

- Optimal S maximizes $-s \rho S b'(W) - s \rho S = (-b'(W) - 1)s \rho S$, but $b'(W) > -1$ at all $W < W^1$.

LEMMA 2
The region of search for monitoring is an interval $(R, \tilde{W}]$, where $\tilde{W} < W_0 := \arg\max b(W)$.

- The gain from searching, $-\kappa + \rho(W - R)b'(W) + \rho(M - b(W))$, is monotone in W.
- The search costs, κ and κ_B, imply no search at $W > W_0$.
- The contract starts out in the no-search region.
Verification

Theorem

The unique solution \(b \) of the HJB equation

\[
rb(W) = \mu - \kappa 1_{W \leq \tilde{W}} + (\gamma W + 1_{W \leq \tilde{W}} \rho(W - R)) b'(W)
\]

\[
+ \frac{1}{2} \lambda^2 \sigma^2 b''(W) + 1_{W \leq \tilde{W}} \rho(M - b(W)),
\]

where

\[
 rM = \frac{r}{r + \phi} (\mu - \kappa_B) + \frac{\phi}{r + \phi} rb_0,
\]

with boundary conditions

\(b'(W^1) = -1 \) at a point \(W^1 \) such that \(rb(W^1) + \gamma W^1 = \mu \),

\(b(R) = L \)

is the true value function for the firm under the optimal contract.
Summary of optimal contract dynamics

- Starts out at W_0 with drift $\gamma W_t > 0$ and volatility $\lambda > 0$.
- Compensation is paid when W_t hits the payment threshold W^1, so $W_t \leq W^1$ at all t.
- When W_t drops below the threshold $\tilde{W} < W^1$, the firm searches for a transition from agency to monitoring:
 - the drift of W_t jumps to $\gamma W_t + \rho (W_t - R) > \gamma W_t$,
 - the firm pays the search cost κdt.
- The firm is liquidated if W_t hits the agent’s outside option value $R < \tilde{W}$.
- If a transition to monitoring arrives before W_t hits R:
 - the agent is dismissed with severance $S_t = 0$,
 - firm pays monitoring costs $\kappa_B dt$ and searches for a new agent.
- Reorganization and liquidation are both possible exits from agency.
Computation of the solution

\[b(W) = \max\{b_{NS}(W), b_S(W)\}, \]

where we define

\[rb_{NS}(W) = \mu + \gamma W b'_{NS}(W) + \frac{1}{2} \lambda^2 \sigma^2 b''_{NS}(W), \]

\[rb_S(W) = \mu - \kappa + ((\gamma + \rho) W - \rho R) b'_S(W) + \frac{1}{2} \lambda^2 \sigma^2 b''_S(W) + \rho (M - b_S(W)). \]

- **Backward-shooting** from the payoff boundary point \(W^1 \).
- Splicing point \(\tilde{W} \) found by smooth pasting and super-contact:
 \[\kappa = \rho (W - R) b'_{NS}(W) + \rho (M - b_{NS}(W)). \]
- \(M \) known from just \(b_{NS} \): model solvable in a single pass.
Solution with liquidation or monitoring
Capital structure implementation

- The owners set up the following capital structure:
 - credit line with balance B_t, limit C^L, and interest rate $i(B_t)$,
 - long-term consol debt with coupon payment flow x_d at all t,
 - contingent long-term debt with coupon payment x_{cd} suspended when $B_t > \tilde{C}^L$,
 - equity

- Manager’s compensation: share λ of equity.

- The manager controls the cashflow, makes payments to debt-holders, and chooses a dividend policy to maximize her own payoff.
 - Cumulative dividend payment process: Div_t.

- Credit line balance dynamics:

 $$dB_t = i(B_t)B_t dt + x(B_t)dt + dDiv_t - d\hat{Y}_t$$
Capital structure implementation

Proposition
Let $C^L = \frac{W^1 - R}{\lambda}$ and $\tilde{C}^L = \frac{W^1 - \tilde{W}}{\lambda}$, where \tilde{W} and W^1 are determined in the optimal contract. Set:

$$i(B_t) = \begin{cases}
\gamma & \text{if } B_t < \tilde{C}^L, \\
\gamma + \rho & \text{if } B_t \geq \tilde{C}^L,
\end{cases}$$

$$x_d = \mu - \frac{\gamma}{\lambda} W^1 - \frac{\rho}{\lambda} (W^1 - R),$$

and

$$x_{cd} = \frac{\rho}{\lambda} (W^1 - R).$$

Then the dividend process $Div_t = \frac{I_t}{\lambda}$, the deposit process $\hat{Y}_t = Y_t$, and the balance process $B_t = \frac{W^1 - W_t}{\lambda}$, solve the agent’s optimization problem.
Debt service costs: relief in distress
Market value of securities

\[V_e(B_t) = \mathbb{E}_t \left[\int_0^\tau e^{-rt} d\text{Div}_t + e^{-r\tau} \left(1_{\tau=\tau_L} F_{L,e} + 1_{\tau=\tau_M} F_{M,e} \right) \right], \]

\[V_d(B_t) = \mathbb{E}_t \left[\int_0^\tau e^{-rt} x_d dt + e^{-r\tau} \left(1_{\tau=\tau_L} F_{L,d} + 1_{\tau=\tau_M} F_{M,d} \right) \right], \]

\[V_{cd}(B_t) = \mathbb{E}_t \left[\int_0^\tau e^{-rt} 1_{B_t \leq \tilde{C}_L} x_{cd} dt + e^{-r\tau} \left(1_{\tau=\tau_L} F_{L,cd} + 1_{\tau=\tau_M} F_{M,cd} \right) \right], \]

\[V_{cl}(B_t) = \mathbb{E}_t \left[\int_0^\tau e^{-rt} d(Y_t - \text{Div}_t) \right. \]

\[\left. - \int_0^\tau e^{-rt} \left(x_d + 1_{B_t \leq \tilde{C}_L} x_{cd} + 1_{B_t > \tilde{C}_L} \kappa \right) dt \right. \]

\[+ e^{-r\tau} \left(1_{\tau=\tau_L} F_{L,cl} + 1_{\tau=\tau_M} F_{M,cl} \right) \],

where the constants \(F_{L,sec} \) and \(F_{M,sec} \) follow some seniority rule.
A tool: Feynman-Kac formula

Lemma 3

Let W_t follow the equilibrium law of motion for the manager’s continuation value until a stopping time $\tau = \min\{\tau_L, \tau_M\}$. Let g be a function defined on $[R, W^1]$. Let k, F_L, F_M be constant. Then the same function G defined on $[R, W^1]$ solves both

$$G(W_0) = \mathbb{E} \left[\int_0^\tau e^{-rt} g(W_t) dt - k \int_0^\tau e^{-rt} dI_t
ight. \\
\left. + e^{-r\tau} (1_{\tau=\tau_L} F_L + 1_{\tau=\tau_M} F_M) \right]$$

and

$$rG(W) = g(W) + \left(\gamma W + 1_{W \leq \tilde{W}} \rho (W - R) \right) G'(W) \\
+ \frac{1}{2} \lambda^2 \sigma^2 G''(W) + 1_{W \leq \tilde{W}} \rho (F_M - G(W))$$

with boundary conditions $G(R) = F_L$ and $G'(W^1) = -k$.
Value of securities: a seniority rule

- Example seniority rule:
 1. long-term debt,
 2. contingent debt,
 3. revolving credit line,
 4. equity.

- Flow and terminal payoffs:
 1. \[F_{L,d} = \min\{D, L\}, \]
 \[F_{M,d} = \min\{D, M\}, \]
 2. \[F_{L,cd} = \min\{D_{cd}, L - F_{L,d}\}, \]
 \[F_{M,cd} = \min\{D_{cd}, M - F_{M,d}\}, \]
 3. \[F_{L,cl} = \min\{B_\tau, L - F_{L,d} - F_{L,cd}\}, \]
 \[F_{M,cl} = \min\{B_\tau, M - F_{M,d} - F_{M,cd}\}, \]
 4. nothing.
Value of securities

The graph represents the value of securities as a function of B. The graph shows different curves for V_{el}, V_{cd}, D_{cd}, $V_d = D$, and V_{eq}. The x-axis represents B, and the y-axis represents the market values of securities.

- V_{el}: Black curve.
- V_{cd}: Blue curve.
- D_{cd}: Dotted blue curve.
- $V_d = D$: Green curve.
- V_{eq}: Red curve.
Comparative Statics

Table: Comparative statics for the capital structure.

<table>
<thead>
<tr>
<th></th>
<th>dC^L</th>
<th>dD</th>
<th>dD_{cd}</th>
<th>dW_0</th>
<th>db_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>$d\rho$</td>
<td>$-$</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>$d\kappa$</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>$d\phi$</td>
<td>$-$</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>$d\kappa_B$</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>dL</td>
<td>$-$</td>
<td>$+$</td>
<td>$+$</td>
<td>$-$</td>
<td>$+$</td>
</tr>
<tr>
<td>dR</td>
<td>$-$</td>
<td>$-$</td>
<td>$-$</td>
<td>$+$</td>
<td>$-$</td>
</tr>
<tr>
<td>$d\gamma$</td>
<td>$-$</td>
<td>\pm</td>
<td>\pm</td>
<td>$-$</td>
<td>$-$</td>
</tr>
<tr>
<td>$d\sigma^2$</td>
<td>$+$</td>
<td>$-$</td>
<td>$-$</td>
<td>\pm</td>
<td>$-$</td>
</tr>
</tbody>
</table>
Recap and next steps

- We extend the DS model of optimal capital structure to allow for financial restructuring as an exit, in addition to liquidation.

- We assume transitions to and out of restructuring are slow.
 - a definition of financial distress

- In an optimal contract, in distress, the manager’s faces a risk of dismissal and, correspondingly, a higher drift in her continuation value.

- An optimal capital structure has contingent debt and performance pricing.

- Next steps:
 - testing the perditions,
 - relaxing the assumption of creditor commitment,
 - GE effects.
Table 1: Balance Sheet and Corporate Bankruptcies 1980 to 2014

<table>
<thead>
<tr>
<th>Moment</th>
<th>Non-Bankrupt</th>
<th>Chapter 11</th>
<th>Chapter 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency of Exit (%)</td>
<td>1.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of Exit by Chapter 7 (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fraction of Chapter 11 Bankruptcy (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital (millions 1983$)</td>
<td>953.18</td>
<td>35.61</td>
<td>408.78***</td>
</tr>
<tr>
<td>Cash (millions 1983$)</td>
<td>125.77</td>
<td>9.87</td>
<td>52.84***</td>
</tr>
<tr>
<td>Assets (millions 1983$)</td>
<td>1371.17</td>
<td>95.59</td>
<td>503.79***</td>
</tr>
<tr>
<td>Op. Income (EBITDA) / Assets (%)</td>
<td>5.49</td>
<td>10.90</td>
<td>-8.34*</td>
</tr>
<tr>
<td>Net Debt / Assets (%)</td>
<td>9.11</td>
<td>11.30</td>
<td>29.61***</td>
</tr>
<tr>
<td>Total Debt / Assets (%)</td>
<td>28.31</td>
<td>24.45</td>
<td>41.99***</td>
</tr>
<tr>
<td>Frac. Firms with Negative Net Debt (%)</td>
<td>36.07</td>
<td>-</td>
<td>21.88*</td>
</tr>
<tr>
<td>Secured Debt / Total Debt (%)</td>
<td>43.90</td>
<td>40.77</td>
<td>47.63*</td>
</tr>
<tr>
<td>Interest Coverage (EBITDA/Interest)</td>
<td>14.01</td>
<td>4.89</td>
<td>-0.22*</td>
</tr>
<tr>
<td>Equity Issuance / Assets (%)</td>
<td>4.70</td>
<td>0.06</td>
<td>2.84*</td>
</tr>
<tr>
<td>Fraction Firms Issuing Equity (%)</td>
<td>22.04</td>
<td>-</td>
<td>13.14*</td>
</tr>
<tr>
<td>Net Investment / Assets (%)</td>
<td>1.16</td>
<td>0.34</td>
<td>-2.94*</td>
</tr>
<tr>
<td>Dividend / Assets (%)</td>
<td>3.49</td>
<td>2.03</td>
<td>1.80*</td>
</tr>
<tr>
<td>Z-score</td>
<td>3.74</td>
<td>3.20</td>
<td>-1.36***</td>
</tr>
<tr>
<td>DD Prob. of Default (%)</td>
<td>2.13</td>
<td>0.01</td>
<td>3.60*</td>
</tr>
</tbody>
</table>

Note: See Appendix A1 for a detailed definition of variables and the construction of bankruptcy and exit indicators. Medians (average) reported in the table correspond to the time series average of the cross-sectional median (mean) obtained for every year in our sample. Test for differences in means at 10% level of significance: * denotes Chapter 11 different from non-bankrupt, ** denotes Chapter 7 different from Non-bankrupt, *** denotes Chapter 11 different from Chapter 7. DD, distance to default, EBITDA, earnings before interest, tax, depreciation and authorization.