Corporate Income Taxation and Firm Efficiency

Evidence from a large panel of European firms

Joanna Tyrowicz (IAAEU, GRAPE, UW and IZA)
Jakub Mazurek (GRAPE)
Karsten Staehr (TTU and Eestipank)

NBP Summer Workshop, 2019
Motivation

- Theory: taxes are (almost) neutral
 - if $Q = \arg\max \Pi$ then $\forall \tau$ it holds that $Q = \arg\max (1 - \tau)\Pi$
 - tax shield (financing cost and structure)
 - taxes on K and L could be affecting optimal K/L

- Reality: More efficient firms \rightarrow profits \uparrow \rightarrow corr(π, tax) > 0
Motivation

• Theory: taxes are (almost) neutral
 • if $Q = \arg\max \Pi$ then $\forall \tau$ it holds that $Q = \arg\max (1 - \tau)\Pi$
 • tax shield (financing cost and structure)
 • taxes on K and L could be affecting optimal K/L

• Reality: More efficient firms \rightarrow profits ↑
Motivation

- Theory: taxes are (almost) neutral
 - if $Q = \arg\max \Pi$ then $\forall \tau$ it holds that $Q = \arg\max (1 - \tau)\Pi$
 - tax shield (financing cost and structure)
 - taxes on K and L could be affecting optimal K/L

- Reality: More efficient firms \rightarrow profits \uparrow \rightarrow $\text{corr}(\pi,\text{tax}) > 0$
Motivation

- **Theory:** taxes are (almost) neutral
 - if $Q = \arg\max \Pi$ then $\forall \tau$ it holds that $Q = \arg\max (1 - \tau)\Pi$
 - tax shield (financing cost and structure)
 - taxes on K and L could be affecting optimal K/L

- **Reality:** More efficient firms \rightarrow profits \uparrow \rightarrow $corr(\pi, tax) > 0$
Motivation

- **Theory:** taxes are (almost) neutral
 - if \(Q = \text{argmax} \Pi \) then \(\forall \tau \) it holds that \(Q = \text{argmax} (1 - \tau) \Pi \)
 - tax shield (financing cost and structure)
 - taxes on \(K \) and \(L \) could be affecting optimal \(K/L \)

- **Reality:** More efficient firms \(\rightarrow \) profits \(\uparrow \) \(\rightarrow \) \(\text{corr}(\pi, \text{tax}) > 0 \)

Question

Are CI taxes neutral for firm efficiency?

- Taxes may be a cost \(\rightarrow \) reduce capital accumulation & investment
- Taxes may drive away from efficient technologies
Motivating example

Technology 1: immediate gratification

- Investment easily divisible
- Short cycle from investment to revenue
- High liquidity
Motivating example

Technology 1: immediate gratification

- Investment easily divisible
- Short cycle from investment to revenue
- High liquidity

Technology 2: suffering through the dungeons of depreciation

- Indivisible and large investments
- Long cycle from investment to revenue
- Low liquidity
Distortions to inter-temporal decisions (investment \rightarrow capital)
- Modigliani & Miller (1965), Auerbach (1979), Fazzari et al (1988) ...
- Giroud and Rauh (2019)
Distortions to inter-temporal decisions (investment → capital)

Exploit tax reforms / discontinuities for exogeneity
• Distortions to inter-temporal decisions (investment \rightarrow capital)
 • Modigliani & Miller (1965), Auerbach (1979), Fazzari et al (1988) ...
 Giroud and Rauh (2019)
• Exploit tax reforms / discontinuities for exogeneity
• (Accounting) Literature on book-tax conformity and tax audits
Distortions to inter-temporal decisions (investment \rightarrow capital)

Exploit tax reforms / discontinuities for exogeneity

(Accounting) Literature on book-tax conformity and tax audits

Contribution
- Instead of reforms: “business as usual” identification
- Instead of inter-temporal decision: value added (efficiency)
- Generally accessible data
Identification strategy

\[Y_{i,t} = A(tax_{i,t}, \cdot)K_{i,t}^{\beta_k} + L_{i,t}^{\beta_l} \] (1)

OLS estimation of \(A \) biased \(\rightarrow \) instrument
Identification strategy

\[Y_{i,t} = A(tax_{i,t}, \cdot) K_{i,t}^{\beta_k^s} + L_{i,t}^{\beta_i^s} \]

(1)

OLS estimation of \(A \) biased \(\rightarrow \) instrument

1. Measure technology specific effective tax rate \(\rightarrow \) deviations
Identification strategy

\[Y_{i,t} = A(tax_{i,t}, \cdot) K_{i,t}^{\beta_{k}^{s}} + L_{i,t}^{\beta_{l}^{s}} \]

(1)

OLS estimation of A biased \rightarrow instrument

1. Measure technology specific effective tax rate \rightarrow deviations
 - average across all countries LYO (=all but “mine”)
 - deviation from the national effective tax rate
 - in a given sector (NACE 4 digit)
 - standardized (in SDs)

2. Firm FE, so only variation over time (country and sector specific)
Identification strategy

\[Y_{i,t} = \mathcal{A}(tax_{i,t}, \cdot)K_{i,t}^{\beta_k} + L_{i,t}^{\beta_l} \] (1)

OLS estimation of \(\mathcal{A} \) biased \(\rightarrow \) instrument

1. Measure technology specific effective tax rate \(\rightarrow \) deviations
2. Firm FE, so only variation over time (country and sector specific)

\[IV_{c,s,t} = \frac{(ETR_{s,t} - \sum_{i \notin (c)} ETR_{s,t})}{\sqrt{\frac{1}{\sum_{i \notin (c)} \sum_{i \notin (c)} ETR_{s,t}}}} \]

3. Use this \(IV_{c,s,t} \) in estimation
Identification strategy

\[Y_{i,t} = A(tax_{i,t}, \cdot)K_{i,t}^{\beta_k^s} + L_{i,t}^{\beta_l^s} \]

(1)

OLS estimation of \(A \) biased \(\rightarrow \) instrument

1. Measure technology specific effective tax rate \(\rightarrow \) deviations
2. Firm FE, so only variation over time (country and sector specific)
3. Use this \(IV_{c,s,t} \) in estimation

\[
\begin{align*}
\log VA_{i,t} &= \beta_k^s \log k_{i,t} + \beta_l^s \log l_{i,t} + \alpha tax_{i,t} + u_t + u_i + \epsilon_{i,t} \\
tax_{i,t} &= \delta \cdot IV_{c,s,t} + \eta_t + \epsilon_{i,t}
\end{align*}
\]
Data
Uniquely vast data

8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
Uniquely vast data

8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
- Balance sheets and P/L statements (+ firm characteristics)

- ≈ 50% in market services

Kalemli-Ozcan et al (2015): standard for cleaning one wave of the data

We combine many waves: fill in many missings (4% vs ≈ 40%)

In addition: we also impute

Flexibility in measurement of taxation

Firm history + country tax rules → carry forward eligibility
Uniquely vast data

8 waves of Amadeus data

- 12 mio firms, 69 mio firm-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
- Balance sheets and P/L statements (+ firm characteristics)
- $\approx 50\%$ in market services
Uniquely vast data

8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
- Balance sheets and P/L statements (+ firm characteristics)
- ≈ 50% in market services
Uniquely vast data

8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
- Balance sheets and P/L statements (+ firm characteristics)
- \(\approx 50\% \) in market services

- Kalemli-Ozcan et al (2015): standard for cleaning one wave of the data
8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
- Balance sheets and P/L statements (+ firm characteristics)
- \(\approx 50\% \) in market services

- Kalemli-Ozcan et al (2015): standard for cleaning one wave of the data
- We combine many waves: fill in many missings (4% vs \(\approx 40\% \))
Uniquely vast data

8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
- Balance sheets and P/L statements (+ firm characteristics)
- \(\approx 50\% \) in market services
- Kalemli-Ozcan et al (2015): standard for cleaning one wave of the data
- We combine many waves: fill in many missings (4\% vs \(\approx 40\% \))
- In addition: we also impute
Uniquely vast data

8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
- Balance sheets and P/L statements (+ firm characteristics)
- $\approx 50\%$ in market services

- Kalemli-Ozcan et al (2015): standard for cleaning one wave of the data
- We combine many waves: fill in many missings (4\% vs $\approx 40\%$)
- In addition: we also impute
Uniquely vast data

8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
- Balance sheets and P/L statements (+ firm characteristics)
- \(\approx 50\% \) in market services
- Kalemli-Ozcan et al (2015): standard for cleaning one wave of the data
- We combine many waves: fill in many missings (4% vs \(\approx 40\% \))
- In addition: we also impute

- Flexibility in measurement of taxation
Uniquely vast data

8 waves of Amadeus data

- 12 mio firms, 69 mio fim-years over nearly 3 decades from 44 countries
- Public (listed) and private (even very small) firms
- Balance sheets and P/L statements (+ firm characteristics)
- \(\approx 50\% \) in market services
- Kalemli-Ozcan et al (2015): standard for cleaning one wave of the data
- We combine many waves: fill in many missings (4\% vs \(\approx 40\% \))
- In addition: we also impute

- Flexibility in measurement of taxation
- Firm history + country tax rules \(\rightarrow \) carry forward eligibility
Some stylized facts

Table 1: Sources of variation in taxation measures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Firm</th>
<th>Country</th>
<th>Sector</th>
<th>Firm</th>
<th>Country</th>
<th>Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTD</td>
<td>17.8%</td>
<td>0.1%</td>
<td>0.4%</td>
<td>15.5%</td>
<td>0.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>BTD / Assets</td>
<td>7.3%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>6.9%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>BTD / PTI</td>
<td>65.3%</td>
<td>14.0%</td>
<td>17.1%</td>
<td>69.3%</td>
<td>14.4%</td>
<td>18.4%</td>
</tr>
<tr>
<td>BTD / taxes paid</td>
<td>33.2%</td>
<td>0.7%</td>
<td>0.5%</td>
<td>31.2%</td>
<td>0.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Taxes paid</td>
<td>73.8%</td>
<td>9.6%</td>
<td>63.9%</td>
<td>76.8%</td>
<td>9.5%</td>
<td>71.9%</td>
</tr>
<tr>
<td>Taxes paid / Assets</td>
<td>85.0%</td>
<td>5.2%</td>
<td>11.2%</td>
<td>88.0%</td>
<td>5.4%</td>
<td>6.6%</td>
</tr>
<tr>
<td>Taxes paid / Lagged assets</td>
<td>66.8%</td>
<td>5.7%</td>
<td>9.8%</td>
<td>68.6%</td>
<td>6.5%</td>
<td>10.6%</td>
</tr>
<tr>
<td>ETR (1Y)</td>
<td>62.9%</td>
<td>18.0%</td>
<td>20.2%</td>
<td>68.5%</td>
<td>19.7%</td>
<td>21.6%</td>
</tr>
<tr>
<td>ETR (2Y)</td>
<td>41.1%</td>
<td>0.3%</td>
<td>45.6%</td>
<td>43.7%</td>
<td>1.3%</td>
<td>3.4%</td>
</tr>
<tr>
<td>CF incidence</td>
<td>69.6%</td>
<td>5.9%</td>
<td>11.1%</td>
<td>7 / 17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Some stylized facts

Table 1: Sources of variation in taxation measures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Firm</th>
<th>All firms</th>
<th>Firms ineligible to CF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Firm</td>
<td>Country</td>
</tr>
<tr>
<td>BTD</td>
<td>17.8%</td>
<td>0.1%</td>
<td>0.4%</td>
</tr>
<tr>
<td>BTD / Assets</td>
<td>7.3%</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>BTD / PTI</td>
<td>65.3%</td>
<td>14.0%</td>
<td>17.1%</td>
</tr>
<tr>
<td>BTD/ taxes paid</td>
<td>33.2%</td>
<td>0.7%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Taxes paid</td>
<td>73.8%</td>
<td>9.6%</td>
<td>63.9%</td>
</tr>
<tr>
<td>Taxes paid / Assets</td>
<td>85.0%</td>
<td>5.2%</td>
<td>11.2%</td>
</tr>
<tr>
<td>Taxes paid / Lagged assets</td>
<td>66.8%</td>
<td>5.7%</td>
<td>9.8%</td>
</tr>
</tbody>
</table>
Some stylized facts

Table 1: Sources of variation in taxation measures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Firm</th>
<th>Country</th>
<th>Sector</th>
<th>Firm</th>
<th>Country</th>
<th>Sector</th>
</tr>
</thead>
<tbody>
<tr>
<td>BTD</td>
<td>17.8%</td>
<td>0.1%</td>
<td>0.4%</td>
<td>15.5%</td>
<td>0.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>BTD / Assets</td>
<td>7.3%</td>
<td>0.0%</td>
<td>0.1%</td>
<td>6.9%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>BTD / PTI</td>
<td>65.3%</td>
<td>14.0%</td>
<td>17.1%</td>
<td>69.3%</td>
<td>14.4%</td>
<td>18.4%</td>
</tr>
<tr>
<td>BTD / taxes paid</td>
<td>33.2%</td>
<td>0.7%</td>
<td>0.5%</td>
<td>31.2%</td>
<td>0.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Taxes paid</td>
<td>73.8%</td>
<td>9.6%</td>
<td>63.9%</td>
<td>76.8%</td>
<td>9.5%</td>
<td>71.9%</td>
</tr>
<tr>
<td>Taxes paid / Assets</td>
<td>85.0%</td>
<td>5.2%</td>
<td>11.2%</td>
<td>88.0%</td>
<td>5.4%</td>
<td>6.6%</td>
</tr>
<tr>
<td>Taxes paid / Lagged assets</td>
<td>66.8%</td>
<td>5.7%</td>
<td>9.8%</td>
<td>68.6%</td>
<td>6.5%</td>
<td>10.6%</td>
</tr>
<tr>
<td>ETR (1Y)</td>
<td>62.9%</td>
<td>18.0%</td>
<td>20.2%</td>
<td>68.5%</td>
<td>19.7%</td>
<td>21.6%</td>
</tr>
<tr>
<td>ETR (2Y)</td>
<td>41.1%</td>
<td>0.3%</td>
<td>45.6%</td>
<td>43.7%</td>
<td>1.3%</td>
<td>3.4%</td>
</tr>
</tbody>
</table>
Some stylized facts

Table 1: Sources of variation in taxation measures

<table>
<thead>
<tr>
<th>Variable</th>
<th>Firm</th>
<th>All firms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Country</td>
<td>Sector</td>
<td></td>
</tr>
<tr>
<td>BTD</td>
<td>17.8%</td>
<td>0.1%</td>
<td>0.4%</td>
</tr>
<tr>
<td>BTD / Assets</td>
<td>7.3%</td>
<td>0.0%</td>
<td>0.1%</td>
</tr>
<tr>
<td>BTD / PTI</td>
<td>65.3%</td>
<td>14.0%</td>
<td>17.1%</td>
</tr>
<tr>
<td>BTD/ taxes paid</td>
<td>33.2%</td>
<td>0.7%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Taxes paid</td>
<td>73.8%</td>
<td>9.6%</td>
<td>63.9%</td>
</tr>
<tr>
<td>Taxes paid / Assets</td>
<td>85.0%</td>
<td>5.2%</td>
<td>11.2%</td>
</tr>
<tr>
<td>Taxes paid / Lagged assets</td>
<td>66.8%</td>
<td>5.7%</td>
<td>9.8%</td>
</tr>
<tr>
<td>ETR (1Y)</td>
<td>62.9%</td>
<td>18.0%</td>
<td>20.2%</td>
</tr>
<tr>
<td>ETR (2Y)</td>
<td>41.1%</td>
<td>0.3%</td>
<td>45.6%</td>
</tr>
<tr>
<td>CF incidence</td>
<td>69.6%</td>
<td>5.9%</td>
<td>11.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Variable</th>
<th>Firm</th>
<th>All firms</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Country</td>
<td>Sector</td>
<td></td>
</tr>
<tr>
<td>BTD</td>
<td>15.5%</td>
<td>0.1%</td>
<td>0.5%</td>
</tr>
<tr>
<td>BTD / Assets</td>
<td>6.9%</td>
<td>0.0%</td>
<td>0.0%</td>
</tr>
<tr>
<td>BTD / PTI</td>
<td>69.3%</td>
<td>14.4%</td>
<td>18.4%</td>
</tr>
<tr>
<td>BTD/ taxes paid</td>
<td>31.2%</td>
<td>0.8%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Taxes paid</td>
<td>76.8%</td>
<td>9.5%</td>
<td>71.9%</td>
</tr>
<tr>
<td>Taxes paid / Assets</td>
<td>88.0%</td>
<td>5.4%</td>
<td>6.6%</td>
</tr>
<tr>
<td>Taxes paid / Lagged assets</td>
<td>68.6%</td>
<td>6.5%</td>
<td>10.6%</td>
</tr>
<tr>
<td>ETR (1Y)</td>
<td>68.5%</td>
<td>19.7%</td>
<td>21.6%</td>
</tr>
<tr>
<td>ETR (2Y)</td>
<td>43.7%</td>
<td>1.3%</td>
<td>3.4%</td>
</tr>
<tr>
<td>CF incidence</td>
<td>7 / 17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Positive correlation is robust: \(corr(\tau, \pi) > 0 \)

Table 2: Elasticity of output with respect to taxation (FE OLS)

<table>
<thead>
<tr>
<th></th>
<th>(\text{Full}) T</th>
<th>Q1 T</th>
<th>Q2 T</th>
<th>Q3 T</th>
<th>Q4 T</th>
<th>P25 T</th>
<th>P50 T</th>
<th>P75 T</th>
</tr>
</thead>
<tbody>
<tr>
<td>tax</td>
<td>0.133 (0.000)</td>
<td>0.107 (0.000)</td>
<td>0.115 (0.000)</td>
<td>0.135 (0.000)</td>
<td>0.167 (0.000)</td>
<td>0.119 (0.000)</td>
<td>0.125 (0.000)</td>
<td>0.147 (0.000)</td>
</tr>
<tr>
<td>k</td>
<td>0.255 (0.000)</td>
<td>0.231 (0.000)</td>
<td>0.254 (0.000)</td>
<td>0.273 (0.000)</td>
<td>0.274 (0.000)</td>
<td>0.245 (0.001)</td>
<td>0.263 (0.000)</td>
<td>0.276 (0.000)</td>
</tr>
<tr>
<td>l</td>
<td>0.539 (0.000)</td>
<td>0.602 (0.000)</td>
<td>0.570 (0.000)</td>
<td>0.524 (0.000)</td>
<td>0.474 (0.000)</td>
<td>0.577 (0.001)</td>
<td>0.549 (0.000)</td>
<td>0.504 (0.000)</td>
</tr>
<tr>
<td>(R^2)</td>
<td>0.851</td>
<td>0.879</td>
<td>0.872</td>
<td>0.852</td>
<td>0.812</td>
<td>0.873</td>
<td>0.865</td>
<td>0.841</td>
</tr>
<tr>
<td># i</td>
<td>2,625,365</td>
<td>814,839</td>
<td>529,788</td>
<td>634,856</td>
<td>645,882</td>
<td>313,784</td>
<td>509,907</td>
<td>501,467</td>
</tr>
</tbody>
</table>

\(N (1) \approx 10.2 \text{ mln} \)

\(N (2) – (5) \approx 2.2 \text{mln} \)

\(N (6) – (9) \approx 2 \text{ mln} \)
Positive correlation is robust: $\text{corr}(\tau, \pi) > 0$

Table 3: Elasticity of production with respect to taxation (FE OLS)

<table>
<thead>
<tr>
<th></th>
<th>Q1 VA</th>
<th>Q2 VA</th>
<th>Q3 VA</th>
<th>Q4 VA</th>
<th>P25 VA</th>
<th>P50 VA</th>
<th>P75 VA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2a)</td>
<td>(3a)</td>
<td>(4a)</td>
<td>(5a)</td>
<td>(6a)</td>
<td>(7a)</td>
<td>(8a)</td>
</tr>
<tr>
<td>tax</td>
<td>0.205***</td>
<td>0.146***</td>
<td>0.123***</td>
<td>0.108***</td>
<td>0.167***</td>
<td>0.132***</td>
<td>0.117***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>k</td>
<td>0.286***</td>
<td>0.249***</td>
<td>0.232***</td>
<td>0.231***</td>
<td>0.261***</td>
<td>0.240***</td>
<td>0.228***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>l</td>
<td>0.483***</td>
<td>0.544***</td>
<td>0.572***</td>
<td>0.564***</td>
<td>0.518***</td>
<td>0.562***</td>
<td>0.573***</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.861</td>
<td>0.865</td>
<td>0.862</td>
<td>0.828</td>
<td>0.863</td>
<td>0.865</td>
<td>0.853</td>
</tr>
<tr>
<td># N</td>
<td>1,927,477</td>
<td>2,491,774</td>
<td>2,867,614</td>
<td>2,876,870</td>
<td>1,820,682</td>
<td>2,167,947</td>
<td>2,382,326</td>
</tr>
<tr>
<td># i</td>
<td>660,251</td>
<td>652,751</td>
<td>656,461</td>
<td>655,902</td>
<td>526,093</td>
<td>524,682</td>
<td>523,986</td>
</tr>
</tbody>
</table>
Results
Results

\[\log VA_{i,t} = \beta_k \log k_{i,t} + \beta_l \log l_{i,t} + \alpha(tax_{i,t}) + u_t + u_i + \epsilon_{i,t} \]

\[tax_{i,t} = \delta \cdot IV_{c,s,t} + \eta_t + \epsilon_{i,t} \]
Results

\[\log \text{VA}_{i,t} = \beta_k^s \log k_{i,t} + \beta_l^s \log l_{i,t} + \alpha(\hat{\text{tax}}_{i,t}) + u_t + u_i + \epsilon_{i,t} \]
\[\text{tax}_{i,t} = \delta \cdot \text{IV}_{c,s,t} + \eta_t + \epsilon_{i,t} \]

Table 4: OLS vs IV estimation of \(\alpha \)

<table>
<thead>
<tr>
<th></th>
<th>OLS Firms in ‘trusted’ sectors</th>
<th>IV Firms in ‘trusted’ sectors ineligible to CF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FE FE FD</td>
<td>FE FD MI FE MI FD</td>
</tr>
<tr>
<td>Controlling for inputs</td>
<td>0.133 -0.043 -0.035</td>
<td>-0.056 -0.032 -0.053 -0.039</td>
</tr>
<tr>
<td></td>
<td>(0.000) (0.004) (0.008)</td>
<td>(0.005) (0.008) (0.006) (0.011)</td>
</tr>
</tbody>
</table>
Results

\[
\log VA_{i,t} = \beta_k \log k_{i,t} + \beta_l \log l_{i,t} + \alpha(tax_{i,t}) + u_t + u_i + \epsilon_{i,t}
\]

\[
tax_{i,t} = \delta \cdot IV_{c,s,t} + \eta_t + \epsilon_{i,t}
\]

Table 4: OLS vs IV estimation of \(\alpha \)

<table>
<thead>
<tr>
<th></th>
<th>OLS</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Firms in ‘trusted’ sectors</td>
<td>Firms in ‘trusted’ sectors ineligible to CF</td>
</tr>
<tr>
<td></td>
<td>FE</td>
<td>FE</td>
</tr>
<tr>
<td>Controlling for inputs</td>
<td>0.133 (0.000)</td>
<td>-0.043 (0.004)</td>
</tr>
<tr>
<td>No inputs</td>
<td>0.26 (0.000)</td>
<td>0.29 (0.005)</td>
</tr>
</tbody>
</table>
Results – robustness

Table 5: Elasticity of TFP with respect to taxation (IV)

<table>
<thead>
<tr>
<th></th>
<th>Sector specific intercept</th>
<th>Sector specific intercept and slopes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All No CF</td>
<td>All No CF</td>
</tr>
<tr>
<td>Second stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>tax</td>
<td>-0.043</td>
<td>-0.056</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
<td>(0.005)</td>
</tr>
<tr>
<td>k</td>
<td>0.35</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
<td>(0.003)</td>
</tr>
<tr>
<td>l</td>
<td>0.56</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
<td>(0.001)</td>
</tr>
<tr>
<td>R²</td>
<td>0.75</td>
<td>0.71</td>
</tr>
<tr>
<td>First stage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV</td>
<td>0.014</td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td>(0.000)</td>
<td>(0.000)</td>
</tr>
<tr>
<td>R²</td>
<td>0.12</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Note: FE and FD indicate fixed effects and first differences, respectively.
Results – a lot of heterogeneity

[Bar chart showing a wide range of values for different countries, indicating significant variability.]
Results – but this heterogeneity is not on skill
Results – and is quite specific to industries

A: Agriculture
C: Mining
DA: Manufacture of food products
DB: Manufacture of textiles
DC: Manufacture of leather
DD: Manufacture of wood
DE: Manufacture of paper
DF: Manufacture of refined petroleum products
DG: Manufacture of chemicals
DH: Manufacture of plastic products
DI: Manufacture of other non-metallic products
DJ: Manufacture of basic metals
DK: Manufacture of machinery and equipment n.e.c.
DL: Manufacture of electrical and optical equipment
DM: Manufacture of transport equipment
DN: Manufacturing n.e.c.
E: Electricity gas and water supply
F: Construction
G: Wholesale and retail trade
H: Hotels and restaurants
I: Transport storage and communication
Let’s pretend that we take those results seriously
Implications

Welfare cost of taxing the capital goes beyond accumulation or K/L

- Model with the choice of technology
Implications

Welfare cost of taxing the capital goes beyond accumulation or K/L

- Model with the choice of technology
- Myopia in technology choice by firms
Implications

Welfare cost of taxing the capital goes beyond accumulation or K/L

- Model with the choice of technology
- Myopia in technology choice by firms
- Credit constraints vs “type” of technology
Implications

Welfare cost of taxing the capital goes beyond accumulation or K/L

- Model with the choice of technology
- Myopia in technology choice by firms
- Credit constraints vs “type” of technology
- Another friction in “directed” search
Implications

Welfare cost of taxing the capital goes beyond accumulation or K/L

- Model with the choice of technology
- Myopia in technology choice by firms
- Credit constraints vs “type” of technology
- Another friction in “directed” search
Implications

Welfare cost of taxing the capital goes beyond accumulation or K/L

- Model with the choice of technology
- Myopia in technology choice by firms
- Credit constraints vs “type” of technology
- Another friction in “directed” search

- Where from the cross-country heterogeneity? What does it imply?
Implications

Welfare cost of taxing the capital goes beyond accumulation or K/L

- Model with the choice of technology
- Myopia in technology choice by firms
- Credit constraints vs “type” of technology
- Another friction in “directed” search

- Where from the cross-country heterogeneity? What does it imply?
- Can we build intuitions on this unobserved choice from the data?
Summary

- Still work in progress!
Summary

- Still work in progress!
- We test neutrality of taxation with large new panel and a new instrument
- on average 10% more CIT to be paid \rightarrow 4% lower VA

- Where next (empirically):
 - try out this IV vs Bartik instruments vs "traditional" causal identification
 - selection into CF?
Summary

- Still work in progress!
- We test neutrality of taxation with large new panel and a new instrument
 - on average 10% more CIT to be paid \rightarrow 4% lower VA
- very heterogeneous: across industries and countries
Summary

- Still work in progress!
- We test neutrality of taxation with large new panel and a new instrument
- on average 10% more CIT to be paid \rightarrow 4% lower VA
- very heterogeneous: across industries and countries \rightarrow WHY?
Summary

- **Still work in progress!**
- We test neutrality of taxation with large new panel and a new instrument
- on average 10% more CIT to be paid \rightarrow 4% lower VA
- very heterogeneous: across industries and countries \rightarrow WHY?
- Where next (empirically):
 - try out this IV vs Bartik instruments vs “traditional” causal identification
 - selection into CF?
Thank you and
I am happy to take questions!

w: grape.org.pl
t: grape_org
f: grape.org
e: j.tyrowicz@grape.org.pl