Introduction

Motivation and Main Findings

- No identification results for TVP-SVARs (in particular Primiceri (2005))
- Some evidence that Primiceri’s TVP-SVAR setup may be nonidentified (Lubik et al., 2014; Yamamura (2017))
- Identification necessary to settle the issue of sources of variability in the data (coefficients vs. volatilities)
- I failed to demonstrate nonidentification of Primiceri’s model

... But I came up with the alternative TVP-SVAR, for which I gave sufficient conditions for global identification

These suggest the following:

- TV contemporaneous relation matrix is identified without any restrictions (i.e. you don’t need Choleski scheme, actually you don’t need any other one!)
- In contrast, you should severely restrict the covariance structure for TV coefficients on lagged data

My setup and contribution

My TV-SVAR:

\[
y_t = c_t + x_t \beta_t + \Psi \xi_t; \quad \xi_t \sim N(0, I)
\]

\[
\begin{bmatrix}
\alpha^\gamma

\alpha^\beta

\alpha^\delta
\end{bmatrix}
\sim N\left(0, \begin{bmatrix} \Omega & 0 & 0 \\
0 & \Omega & 0 \\
0 & 0 & \Omega \end{bmatrix}\right)
\]

\[
\vec(\Psi_t) = \vec(\Psi_{t-1}) + u_t; \quad u_t \sim N\left(0, \begin{bmatrix} \Sigma_1 & 0 & \ldots & 0 \\
0 & \Sigma_2 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \Sigma_m \end{bmatrix}\right)
\]

NOTE: The pattern of \(\Psi \) is unrestricted!

All shocks are mutually independent, \(c_t \sim N(0, \Sigma_0) \), \(\beta_t \sim N(0, \Sigma_{\beta}) \) and

\[
\vec(\Psi_0) \sim N\left(\begin{bmatrix} \vec(\Psi_{0,11}) & 0 & \ldots & 0 \\
0 & \vec(\Psi_{0,22}) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & \vec(\Psi_{0,mn}) \end{bmatrix}\right)
\]

\(\Psi_0 \) is nonsingular

Let us denote the model parameters as \(\theta = (\Omega, \Sigma_{\beta}, \Sigma_0, \ldots, \Sigma_m) \in \Theta \), initial observations as \(y^0 = (y_{0,t}, \ldots, y_{0,T}) \) and let \(p(y_{t}, \ldots, y_{T}|y^0, \theta) \) be the pdf of my TV-SVAR (latent processes are integrated out, though it depends on hyperparameters)

Empirical illustration: U.S. and 6 variables

Real GDP, unemployment rate, GDP deflator, M2 money, federal funds rate, commodity prices, 7 years training sample, effective sample 1967-Q1-2018:Q2

Primiceri’s setup

\[
y_t = c_t + x_t \beta_t + A_t^{-1} \Omega \xi_t
\]

where \(\xi_t \sim N(0, I_6) \); \(z_t = \Pi_0 \otimes (y_{t-1, \ldots, y_{t-6}}) \); \(A_t \) is lower diagonal with 1’s on the diagonal; \(\Omega_t = \text{diag}(\sigma_{1,t}, \ldots, \sigma_{m,t}) \) and

\[
\begin{bmatrix}
\epsilon_t \\
\beta_t
\end{bmatrix}
= \begin{bmatrix} \epsilon_{t-1} \\
\beta_{t-1}
\end{bmatrix} + \begin{bmatrix} \alpha^\gamma \\
\alpha^\beta
\end{bmatrix} \sim N\left(0, \begin{bmatrix} \Omega & 0 \\
0 & \Omega_{\beta} \end{bmatrix}\right)
\]

In addition, let \(a_t \) denote all free elements in \(A_t \) (stacked in a column vector) and \(\alpha_t = (\alpha_{1,t}, \ldots, \alpha_{m,t}) \), then

\[
a_t = a_{t-1} + \epsilon_t; \quad \epsilon_t \sim N(0, \Sigma_{\epsilon}) \quad \log(\alpha_t) = \log(\alpha_{t-1}) + \eta_t; \quad \eta_t \sim N(0, W)
\]

Caveat: Choleski scheme for \(A_t^{-1} \Omega_t \) has nothing to do with identification. Identification is about whether the parameters i.e. \(\Omega, \Sigma_{\beta}, \Sigma_0, S, W \) are identified.

That is whether we can distinguish between all sources of variability for all possible data

Key results:

DEFINITION: My TV-SVAR is globally identified at \(\hat{\theta} \in \Theta \) if \(p(y_{t}, \ldots, y_{T}|y^0, \hat{\theta}) = p(y_{t}, \ldots, y_{T}|y^0, \theta) \) for all \(y_{t}, \ldots, y_{T} \in \mathbb{R}^{m+1} \) implies \(\theta = \hat{\theta} \)

THEOREM 1:

a) Let \(m = 2 \). Then my TV-SVAR is globally identified at almost all \(\Sigma_1, \Sigma_2 \);

b) Let \(m \geq 3 \). Denote the \(i \)-th row of \(\Psi_1 \) as \(l_i \). My TV-SVAR is globally identified at almost all \(\Sigma_1, \Sigma_2, \ldots, \Sigma_m \) provided that

\[
\begin{align*}
&l_1(\Sigma_2 + (\Psi_{0,22})_{22}) > l_1(\Sigma_3 + (\Psi_{0,33})_{33}) > \ldots > l_1(\Sigma_m + (\Psi_{0,mn})_{mn}) \\
&l_2(\Sigma_1 + (\Psi_{0,11})_{11}) > l_2(\Sigma_3 + (\Psi_{0,33})_{33}) > \ldots > l_2(\Sigma_m + (\Psi_{0,mn})_{mn}) \\
&l_m(\Sigma_1 + (\Psi_{0,11})_{11}) > l_m(\Sigma_2 + (\Psi_{0,22})_{22}) > \ldots > l_m(\Sigma_{m-1} + (\Psi_{0,mn})_{mn-1})_{mn-1}
\end{align*}
\]

THEOREM 2: Assume the number of lags is 2. Assume that \(\Omega_0 \) is diagonal (but \(\Omega_0 \) is just positive definite). Then my TV-SVAR is globally identified at almost all \(\Omega_0, \Omega_0 \) (for almost all initial observations and hyperparameters)

Econometric contribution:

Very efficient Bayesian sampling. In contrast to Primiceri (2005), I managed to provide “pure” Gibbs sampling. That is all Gibbs steps use exact sampling from the full conditional posterior (i.e. no Metropolis-Hastings within Gibbs sampling)

IRFs, monetary policy shock normalized to 25 bp: