Distributional consequences of conventional and unconventional monetary policy

Marcin Bielecki, Michał Brzoza-Brzezina, Marcin Kolas

Narodowy Bank Polski

NBP Summer Workshop
Warszawa, 8-12 July 2019
Outline

1. Motivation
2. Model
3. Results
4. Conclusions
5. Additional slides
Motivation

- Monetary policy has redistributive effects:
 - via **balance sheets** (direct effects):
 e.g. surprise inflation redistributes away from owners of nominal assets
 (e.g. Doepke & Schneider 2006)
 - via its **macroeconomic impact** (indirect effects):
 e.g. higher unemployment after monetary tightening hurts relatively poor HHs
 (e.g. Heathcote et al. 2010; Kaplan et al. 2018)
- But:
 - Most studies focus on US
 - Unconventional monetary policy less explored (exception: Lenza & Slacalek 2018)
 - Life-cycle dimension of heterogeneity and housing underexploited
 (exception: Wong 2018)
This paper

- Construct a quantitative life-cycle model of the euro area with a rich asset structure
- Study the distributional consequences of monetary policy
 - Conventional (surprise interest rate shocks)
 - Unconventional (forward guidance)
- Why a life-cycle GE model?
 - Captures an important (and well documented) dimension of HH heterogeneity
 - Allows to consider both direct and indirect effects
 - Allows to document the crucial difference between initial balance sheet effects and remaining lifetime welfare
Preview of results

1. Monetary policy redistributes welfare between age-cohorts
 1. Monetary expansion benefits young households
 2. Both direct and indirect effects are important
2. Conventional policy and forward guidance differ
 1. Not dramatically
 2. Mainly for older cohorts
3. Welfare redistribution differs crucially from initial balance-sheet effects
Outline

1 Motivation
2 Model
3 Results
4 Conclusions
5 Additional slides
Model structure: overview

- New Keynesian model with life-cycle features:
 - 80 cohorts of overlapping generations of households (age 20-99)
 - Age-dependent mortality risk
 - Age-specific productivity
 - Age-specific asset structure

- Rigidities: sticky prices, sticky wages, investment adjustment costs, (collateral constraints)

- Monetary policy:
 - Taylor-like rule
 - Standard and forward guidance policy shocks
 - (ZLB constraint)
Households

- Maximize expected lifetime utility
 \[U_{j,t} = \mathbb{E}_t \sum_{i=0}^{J-j} \beta^i \frac{N_{j+i}}{N_j} \left(\log c_{j+i,t+i} + \psi_{j+i} \log \chi_{j+i,t+i} - \phi_{j+i} \frac{h_{j+i,t+i}^{1+\varphi}}{1+\varphi} \right) \]

 subject to

 \[c_{j,t} + p_{\chi,t}[\chi_{j+1,t+1} - (1-\delta_{\chi})\chi_{j,t}] + a_{j+1,t+1} = w_t z_j h_{j,t} + \frac{R^a_{j,t}}{\pi_t} a_{j,t} + tr_t \]

- Retired households do not work \((z_j = 0\) for \(j \geq 45))
- Financial assets managed by investment funds offering age-specific financial products
 \[R^a_{j,t} = s_{j,t} R_{t-1} + (1-s_{j,t}) R^a_t \]
- Calvo-type wage stickiness
Investment funds

- Manage nominal and real financial assets
- Maximize expected return on total portfolio

\[\mathbb{E}_t \left[R^a_{t+1} k_{t+1} + R_t b_{t+1} \right] \]

where

\[R^a_t = \frac{R^k_t + (1 - \delta) Q_t}{Q_{t-1}} \]

- Distribute ex-post returns to HHs according to age-specific portfolio composition
HH balance sheet (incl. assets in investment funds)

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing stock</td>
<td>Net worth</td>
</tr>
<tr>
<td>Real nonresidential assets</td>
<td>Nominal financial assets (if negative)</td>
</tr>
<tr>
<td>Nominal financial assets (if positive)</td>
<td></td>
</tr>
</tbody>
</table>
Asset distribution

- Housing
- Real fin. assets
- Nominal fin. assets

Note: Average total assets over the life cycle = 1.
Producers

- Final goods aggregated from differentiated intermediate products
 \[c_t + i_t + \delta \chi p_{\chi,t} = \left[\frac{1}{N_t} \int_0^{N_t} y_t(i)^{\frac{1}{\mu}} \, \mathrm{d}i \right]^\mu \]

- Intermediate goods firms produce differentiated products
 \[y_t(i) = k_t(i)^\alpha h_t(i)^{1-\alpha} - \Phi \]

- Zero profits in the steady state, Calvo-type price stickiness

- Capital producers are subject to investment adjustment cost
 \[k_{t+1} = (1 - \delta)k_t + \left[1 - S \left(\frac{i_t}{i_{t-1}} \right) \right] i_t \]
Monetary policy

- Taylor rule with ZLB

\[R_t = \begin{cases} R_{tcb}^b & \text{if } R_{tcb}^b > 1 \\ 1 & \text{if } R_{tcb}^b \leq 1 \end{cases} \]

where

\[
\frac{R_{tcb}^b}{R} = \left(\frac{R_{t-1}}{R} \right)^{\gamma_{R}} \left[\left(\frac{\pi_t}{\pi} \right)^{\gamma_{\pi}} \left(\frac{y_t}{y_{t-1}} \right)^{\gamma_{y}} \right]^{1-\gamma_{R}} \exp(\varepsilon^R_t + \varepsilon^{FG}_{t-H})
\]

- \(\varepsilon^R_t \) is a standard monetary policy shock, \(\varepsilon^{FG}_{t-H} \) is forward guidance (with horizon \(H \))
Life-cycle features:
- Demographic data: Eurostat and EUROPOP, period average: 1999-2018
- Age-specific productivity and hours: HFCS (2014)
- Age-specific asset structure: HFCS (2014)

Taylor rule parameters estimated outside of the model

Other structural parameters taken from the literature or matched to means observed in data
Population (stationary)

- Model
- Population (stationary)
- Population structure (left)
- Mortality risk (right)

Graph showing the population structure and mortality risk over age (20 to 100) with logarithmic scales for the y-axis.
Asset structure

- Aggregate data from financial and non-financial balance sheets (Eurostat, % of GDP w/o government expenditures):
 - Housing stock (170% GDP)
 - Nonresidential fixed assets (230% GDP)
 - HH loans / deposits (84% GDP)

- Age profiles taken from HFCS:
 - Housing = HH main residence + other non-business real estate property
 - Fixed assets = HH business wealth + non self-employment private business + shares + bonds + mutual funds
 - Nominal assets = deposits − mortgage loans − non-mortgage loans. Positive part adjusted proportionally to so that net supply is zero
Asset structure

Model

HFCS data

Nominal assets

Net financial assets

Housing

Nominal assets

Net financial assets
Outline

1. Motivation
2. Model
3. Results
4. Conclusions
5. Additional slides
Overview of simulations

- Effects of conventional and unconventional monetary policy:
 - Aggregate effects
 - Balance sheet effects by cohort
 - Impact on remaining lifetime wealth by cohort
 - Impact on welfare by cohort

- Additional simulations (see the paper):
 - Collateral constraints
 - ZLB
 - Forward guidance puzzle
Aggregate effects of monetary policy easing

- Output
- Consumption
- Real labor income
- Real house prices
- Inflation
- Nominal interest rate
- Real ex post return on bonds
- Real ex post return on capital

Conventional - Forward guidance
Balance-sheet and income effects on impact

Note: % of per capita output.
Balance sheet effects vs remaining life-time welfare

- What matters for redistribution are price changes of maturing assets (Auclert 2017)
- Asset holdings are mainly driven by life-cycle aspects, less so by price changes
 - Example: even if housing becomes expensive, young households continue accumulating it
- Higher asset prices may not necessarily benefit those who hold them
 - Example: higher house prices are bad for a 40-year old HH despite positive balance sheet effects
- To calculate redistributive effects we keep allocations at their steady state values
Definitions of remaining life-time effects

- **House price effect**
 \[
 \Gamma_{j,t}^\chi = \mathbb{E}_t \sum_{i=0}^{J-j} \beta^i \frac{N_{j+i}}{N_j} (p_{\chi,t+i} - p_{\chi}) [(1 - \delta_{\chi})\chi_{j+i} - \chi_{j+i+1}]
 \]

- **Financial returns effect**
 \[
 \Gamma_{j,t}^a = \mathbb{E}_t \sum_{i=0}^{J-j} \beta^i \frac{N_{j+i}}{N_j} \left(\frac{R_{a,j+i,t+i}}{\pi_{t+i}} - \frac{R_{a,j+i}}{\pi} \right) a_{j+i}
 \]

- **Labor income effect**
 \[
 \Gamma_{j,t}^w = \mathbb{E}_t \sum_{i=0}^{JR-1-j} \beta^i \frac{N_{j+i}}{N_j} (w_{t+i}z_{j+i}h_{j+i,t+i} - wz_{j+i}h_{j+i})
 \]

- **Consumption streams (for normalization)**
 \[
 \Gamma_j^c = \sum_{i=0}^{J-j} \beta^i \frac{N_{j+i}}{N_j} c_{j+i}
 \]
Redistributive effects

Note: Loss / gain in % of expected lifetime steady state consumption.
Impact on allocations: consumption and housing

- After monetary policy easing everybody consumes more on impact
 - Young cohorts - because they become richer
 - Old cohorts - because they accelerate decumulation of (relatively expensive) housing
- Stronger reaction of young HHs
Welfare is the most comprehensive measure of impact
- it captures i.a. the negative effect of higher labor supply
Positive effects for young, negative for older HHs
Picture similar to total income and asset price effect - quantity adjustments are not key
<table>
<thead>
<tr>
<th>Outline</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Motivation</td>
</tr>
<tr>
<td>2</td>
<td>Model</td>
</tr>
<tr>
<td>3</td>
<td>Results</td>
</tr>
<tr>
<td>4</td>
<td>Conclusions</td>
</tr>
<tr>
<td>5</td>
<td>Additional slides</td>
</tr>
</tbody>
</table>
Conclusions

1. Monetary policy redistributes welfare between age-cohorts: Monetary expansion benefits young HHs (at the expense of old HHs)
2. Conventional policy and forward guidance differ, but not dramatically
3. Welfare redistribution differs crucially from initial balance-sheet effects
Still to do

- Fit model responses to VAR evidence both for conventional and forward guidance shocks
 - Use recently published estimates of shocks obtained from high-frequency identification for the EA
 - Better combat forward guidance puzzle by modelling it as signal rather than news
- Explore ZLB and occasionally-binding collateral constraints
Outline

1 Motivation
2 Model
3 Results
4 Conclusions
5 Additional slides
Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β</td>
<td>0.988</td>
<td>Discount factor</td>
</tr>
<tr>
<td>φ^{-1}</td>
<td>0.5</td>
<td>Frisch elasticity of labor supply</td>
</tr>
<tr>
<td>δ_X</td>
<td>0.015</td>
<td>Housing depreciation rate</td>
</tr>
<tr>
<td>δ</td>
<td>0.12</td>
<td>Capital depreciation rate</td>
</tr>
<tr>
<td>α</td>
<td>0.3</td>
<td>Capital share in output</td>
</tr>
<tr>
<td>S_1</td>
<td>1</td>
<td>Investment adjustment cost curvature</td>
</tr>
<tr>
<td>μ</td>
<td>1.2</td>
<td>Product markup</td>
</tr>
<tr>
<td>θ</td>
<td>0.66</td>
<td>Calvo probability (prices)</td>
</tr>
<tr>
<td>Φ</td>
<td>0.04</td>
<td>Intermediate goods producers fixed cost</td>
</tr>
<tr>
<td>μ_w</td>
<td>1.2</td>
<td>Wage markup</td>
</tr>
<tr>
<td>θ_w</td>
<td>0.32</td>
<td>Calvo probability (wages)</td>
</tr>
<tr>
<td>π</td>
<td>1.02</td>
<td>Inflation target</td>
</tr>
<tr>
<td>γ_R</td>
<td>0.41</td>
<td>Interest rate smoothing</td>
</tr>
<tr>
<td>γ_π</td>
<td>1.97</td>
<td>Reaction to inflation</td>
</tr>
<tr>
<td>γ_y</td>
<td>0.42</td>
<td>Reaction to GDP growth</td>
</tr>
</tbody>
</table>
Decomposition of financial returns effect

Conventional policy

Forward guidance
Forward guidance puzzle

- Small compared to FGP in Del Negro et al. (2015): 50 b.p. shock

<table>
<thead>
<tr>
<th></th>
<th>Conventional policy</th>
<th>2-year ahead forward guidance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Del Negro et al</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Our model</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Interest rate	![Graph](image5)	![Graph](image7)
Output	![Graph](image6)	![Graph](image8)
Inflation	![Graph](image9)	![Graph](image10)