Taxation and Intra/Intergenerational Equity

Hans Fehr

University of Wuerzburg, CESifo and Netspar

National Bank of Poland, Warsaw - June 13, 2014
1. Motivation

2. Structure of Stochastic OLG Model

3. Recent Applications
 - Should capital income be taxed? (with F. Kindermann)
 - Should pensions be progressive? (with M. Kallweit and F. Kindermann)

4. Conclusions and Outlook
Quantitative evaluation of tax policy and social security programs with life-cycle models is on the research agenda since almost 30 years.
Quantitative evaluation of tax policy and social security programs with life-cycle models is on the research agenda since almost 30 years.

Traditional models with deterministic income analyzed

- labor supply vs. savings distortions;
- labor supply distortions vs. longevity insurance;
- intergenerational vs. intragenerational policy effects.
Quantitative evaluation of tax policy and social security programs with life-cycle models is on the research agenda since almost 30 years.

Traditional models with deterministic income analyzed

- labor supply vs. savings distortions;
- labor supply distortions vs. longevity insurance;
- intergenerational vs. intragenerational policy effects.

Typical recommendations of traditional models:

- Elimination of capital income tax (consumption tax);
- Replace paygo pension system by funded system;
- Strong tax-benefit linkage in paygo pension system;
Quantitative evaluation of tax policy and social security programs with life-cycle models is on the research agenda since almost 30 years.

Traditional models with deterministic income analyzed

- labor supply vs. savings distortions;
- labor supply distortions vs. longevity insurance;
- intergenerational vs. intragenerational policy effects.

Typical recommendations of traditional models:

- Elimination of capital income tax (consumption tax);
- Replace paygo pension system by funded system;
- Strong tax-benefit linkage in paygo pension system;

⇒ Redistribution towards rich future cohorts optimal!
Only recently risk and uncertainty are included in simulation models.
Only recently risk and uncertainty are included in simulation models. Stochastic simulation models allow to

- include the precautionary savings motive for self insurance;
Only recently risk and uncertainty are included in simulation models. Stochastic simulation models allow to

- include the precautionary savings motive for self insurance;
- compare distortion cost and insurance benefits from government programs;
Only recently risk and uncertainty are included in simulation models. Stochastic simulation models allow to

- include the precautionary savings motive for self insurance;
- compare distortion cost and insurance benefits from government programs;
- consider alternative risk-sharing mechanisms (human capital investment, family insurance).
Only recently risk and uncertainty are included in simulation models. Stochastic simulation models allow to

- include the precautionary savings motive for self insurance;
- compare distortion cost and insurance benefits from government programs;
- consider alternative risk-sharing mechanisms (human capital investment, family insurance).

→ Policy recommendations are different!
Households

→ belong to specific skill class within a cohort;
→ work for 45 years, retire at age 65;
→ live up to a maximum age of 100;
Households

- belong to specific skill class within a cohort;
- work for 45 years, retire at age 65;
- live up to a maximum age of 100;
- decide about labor supply, consumption and savings;
- face idiosyncratic lifespan, (disability) and income risk;
- are liquidity constraint (no borrowing).
Households

→ belong to specific skill class within a cohort;
→ work for 45 years, retire at age 65;
→ live up to a maximum age of 100;
→ decide about labor supply, consumption and savings;
→ face idiosyncratic lifespan, (disability) and income risk;
→ are liquidity constraint (no borrowing).

Production sector produces single good using capital and labor.
Structure of Stochastic OLG Model

Households

→ belong to specific skill class within a cohort;
→ work for 45 years, retire at age 65;
→ live up to a maximum age of 100;
→ decide about labor supply, consumption and savings;
→ face idiosyncratic lifespan, (disability) and income risk;
→ are liquidity constraint (no borrowing).

Production sector produces single good using capital and labor.

Government Progressive tax and paygo pension systems of various designs.
Households
→ belong to specific skill class within a cohort;
→ work for 45 years, retire at age 65;
→ live up to a maximum age of 100;
→ decide about labor supply, consumption and savings;
→ face idiosyncratic lifespan, (disability) and income risk;
→ are liquidity constraint (no borrowing).

Production sector produces single good using capital and labor.

Government Progressive tax and paygo pension systems of various designs.

Incomplete market structure No insurance markets.
Should capital income be taxed?

Lucas (1990): Supply-Side Economics

"Capital income taxation will initially be high, imitating a capital levy on the initial stock. If the system converges to a balanced growth path, capital taxation will converge to zero."

Efficiency effects of immediate change to long-run optimal policy amount to 1% of aggregate consumption in any period.
Should capital income be taxed?

Lucas (1990): Supply-Side Economics

"Capital income taxation will initially be high, imitating a capital levy on the initial stock. If the system converges to a balanced growth path, capital taxation will converge to zero."

Efficiency effects of immediate change to long-run optimal policy amount to 1% of aggregate consumption in any period

Conesa/Kitao/Krueger (2009):
Optimal long-run income tax structure:

- flat income tax with 23% tax rate and basic allowance of 7200$
- capital income tax rate 36%

Explanation: Insurance benefits dominate distortions!
Should capital income be taxed?

Problem: Conesa et al. (2009) only consider long-run equilibrium!
Should capital income be taxed?

Problem: Conesa et al. (2009) only consider long-run equilibrium!

What happens along the transition?
Who wins, who loses?
Should capital income be taxed?

Problem: Conesa et al. (2009) only consider long-run equilibrium!

What happens along the transition?
Who wins, who loses?

What is optimal tax structure with respect to efficiency?
Should capital income be taxed?

Problem: Conesa et al. (2009) only consider long-run equilibrium!

What happens along the transition?
Who wins, who loses?

What is optimal tax structure with respect to efficiency?

Why is this optimal?
Should capital income be taxed?

Simulation methodology:

- Initial equilibrium synthetic income taxation

\[(\tau_{k,0} = 0, \kappa_0 = 0.258 \text{ and } \kappa_1 = 0.768) \]
Should capital income be taxed?

Simulation methodology:

- Initial equilibrium synthetic income taxation
 \((\tau_k, 0 = 0, \kappa_0 = 0.258 \text{ and } \kappa_1 = 0.768)\)
- One-time, unannounced change in income tax policy \((\tau_k, \kappa_0, \kappa_1)\)
- \(\kappa_2\) balances intertemporal budget
- Debt balances periodic budget
Should capital income be taxed?

Simulation methodology:

- Initial equilibrium synthetic income taxation
 \((\tau_k, 0 = 0, \kappa_0 = 0.258 \text{ and } \kappa_1 = 0.768)\)
- One-time, unannounced change in income tax policy \((\tau_k, \kappa_0, \kappa_1)\)
- \(\kappa_2\) balances intertemporal budget
- Debt balances periodic budget
- Transition path and new long-run equilibrium
- Calculate welfare effects for different generations
- Determine efficiency effects of the income tax policy
Should capital income be taxed?

Simulation results: Long-run welfare

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Conesa et al. (2009)</th>
<th>Optimal scheme</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ_k</td>
<td>0.36</td>
<td>0.43</td>
</tr>
<tr>
<td>κ_0</td>
<td>0.23</td>
<td>0.20</td>
</tr>
<tr>
<td>κ_1</td>
<td>7</td>
<td>∞</td>
</tr>
<tr>
<td>κ_2</td>
<td>34711</td>
<td>12108</td>
</tr>
<tr>
<td>Hours worked</td>
<td>-0.66</td>
<td>0.69</td>
</tr>
<tr>
<td>Labor supply N</td>
<td>-0.18</td>
<td>1.18</td>
</tr>
<tr>
<td>Capital stock K</td>
<td>-6.50</td>
<td>-8.16</td>
</tr>
<tr>
<td>Debt B/Y</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Output Y</td>
<td>-2.50</td>
<td>-2.29</td>
</tr>
<tr>
<td>Consumption C</td>
<td>-1.45</td>
<td>-0.34</td>
</tr>
<tr>
<td>Long run CEV</td>
<td>1.31</td>
<td>1.48</td>
</tr>
</tbody>
</table>
Should capital income be taxed?
Should capital income be taxed?
Should capital income be taxed?

<table>
<thead>
<tr>
<th></th>
<th>Conesa et al. (2009)</th>
<th>optimal scheme</th>
<th>aggregate efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>base case</td>
</tr>
<tr>
<td>(\tau_k)</td>
<td>0.36</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>(\kappa_0)</td>
<td>0.23</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>(\kappa_1)</td>
<td>7</td>
<td>(\infty)</td>
<td>(\infty)</td>
</tr>
<tr>
<td>(\kappa_2)</td>
<td>34711</td>
<td>12108</td>
<td>12195</td>
</tr>
<tr>
<td>Hours worked</td>
<td>-0.66</td>
<td>0.69</td>
<td>0.72</td>
</tr>
<tr>
<td>Labor supply (N)</td>
<td>-0.18</td>
<td>1.18</td>
<td>1.19</td>
</tr>
<tr>
<td>Capital stock (K)</td>
<td>-6.50</td>
<td>-8.16</td>
<td>-8.02</td>
</tr>
<tr>
<td>Debt (B/Y)</td>
<td>0.00</td>
<td>0.00</td>
<td>-0.72</td>
</tr>
<tr>
<td>Output (Y)</td>
<td>-2.50</td>
<td>-2.29</td>
<td>-2.23</td>
</tr>
<tr>
<td>Consumption (C)</td>
<td>-1.45</td>
<td>-0.34</td>
<td>-0.30</td>
</tr>
<tr>
<td>Long run CEV</td>
<td>1.31</td>
<td>1.48</td>
<td>1.54</td>
</tr>
<tr>
<td>CEV(^c) (g.e.)</td>
<td></td>
<td></td>
<td>-1.66</td>
</tr>
</tbody>
</table>
Should capital income be taxed?
Conclusion:

- Immediate switch to optimal long-run policy comes at efficiency costs.
- High capital income taxation burdens current generations.
Conclusion:

- Immediate switch to optimal long-run policy comes at efficiency costs
- High capital income taxation burdens current generations
- Efficiency perspective → still optimal to tax capital income, but at much lower rates
- Optimal capital income tax rate:
 - 14 percent in closed economy
 - 6 percent in open economy
Should capital income be taxed?

Conclusion:
- Immediate switch to optimal long-run policy comes at efficiency costs
- High capital income taxation burdens current generations
- Efficiency perspective → still optimal to tax capital income, but at much lower rates
- Optimal capital income tax rate:
 - 14 percent in closed economy
 - 6 percent in open economy
- Low interest elasticity of precautionary savings
 → the smaller the share of precautionary savings, the lower the interest rate tax
Pension reforms in recent years have mainly focused on labor market distortions

- Tax-benefit linkage increased;
- Progressivity of pension benefits decreased;
 (OECD progressivity index (average) in 2002: 51.5 in 2006: 39.8);
- The objective to prevent poverty in old-age received less weight.
Should pensions be progressive?

Pension reforms in recent years have mainly focused on labor market distortions

- Tax-benefit linkage increased;
- Progressivity of pension benefits decreased;
 (OECD progressivity index (average) in 2002: 51.5 in 2006: 39.8);
- The objective to prevent poverty in old-age received less weight.

What is the optimal progressivity of the pension system?
Should pensions be progressive?

Pension reforms in recent years have mainly focused on labor market distortions

- Tax-benefit linkage increased;
- Progressivity of pension benefits decreased;
 (OECD progressivity index (average) in 2002: 51.5 in 2006: 39.8);
- The objective to prevent poverty in old-age received less weight.

What is the optimal progressivity of the pension system?

Labor supply distortions vs. insurance benefits:
Fehr and Habermann (2008).
Should pensions be progressive?

Pension reforms in recent years have mainly focused on labor market distortions

- Tax-benefit linkage increased;
- Progressivity of pension benefits decreased;
 (OECD progressivity index (average) in 2002: 51.5 in 2006: 39.8);
- The objective to prevent poverty in old-age received less weight.

What is the optimal progressivity of the pension system?

Labor supply distortions vs. insurance benefits:
Fehr and Habermann (2008).

Why Germany? Expected increase in old-age poverty!
Should pensions be progressive?

Government structure

Tax System

- consumption, (progressive) labor and capital income taxes, public debt
- consumption tax rate is used to balance budget

\[\lambda = 0 \Rightarrow \text{perfectly earnings related} \]
\[\lambda = 1 \Rightarrow \text{perfectly flat} \]
Should pensions be progressive?

Government structure

Tax System

- consumption, (progressive) labor and capital income taxes, public debt
- consumption tax rate is used to balance budget

Pension System

- pays old-age benefits and disability benefits

\[p_j = AF(j_R) \times ep_{j_R} \times APA \]

\[ep_{j+1} = ep_j + \left(1 - \lambda \right) \frac{y_j}{y} + \lambda \]

\[\lambda = 0 \quad \Rightarrow \quad \text{perfectly earnings related} \]
\[\lambda = 1 \quad \Rightarrow \quad \text{perfectly flat} \]
Should pensions be progressive?

Table: Macroeconomic effects of flat pensions (base model)

<table>
<thead>
<tr>
<th>Year</th>
<th>2009</th>
<th>2020</th>
<th>2030</th>
<th>2050</th>
<th>∞</th>
</tr>
</thead>
<tbody>
<tr>
<td>Macroeconomic aggregates</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Labor input</td>
<td>-5.6</td>
<td>-4.9</td>
<td>-4.8</td>
<td>-4.7</td>
<td>-4.7</td>
</tr>
<tr>
<td>Capital</td>
<td>0.0</td>
<td>-2.2</td>
<td>-2.8</td>
<td>-3.0</td>
<td>-3.0</td>
</tr>
<tr>
<td>Prices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wage</td>
<td>2.1</td>
<td>0.9</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Interest rate</td>
<td>-0.3</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-0.1</td>
<td>-0.1</td>
</tr>
<tr>
<td>Consumption tax rate</td>
<td>1.6</td>
<td>2.0</td>
<td>2.2</td>
<td>2.4</td>
<td>2.4</td>
</tr>
<tr>
<td>Pension system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Expenditure (in % of GDP)</td>
<td>-0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Contribution rate</td>
<td>0.5</td>
<td>0.8</td>
<td>1.2</td>
<td>1.3</td>
<td>1.4</td>
</tr>
</tbody>
</table>
Should pensions be progressive?

Table: Welfare effects of flat pensions (base model)*

<table>
<thead>
<tr>
<th>Birth year</th>
<th>Age in year 2009</th>
<th>Retirees</th>
<th>Workers</th>
<th>Future Generations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>low</td>
<td>mid</td>
<td>high</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1920</td>
<td>89</td>
<td>-2.44</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1940</td>
<td>69</td>
<td>-2.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1960</td>
<td>49</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1980</td>
<td>29</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2000</td>
<td>9</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2020</td>
<td>–</td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2060</td>
<td>–</td>
<td>2.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>∞</td>
<td>–</td>
<td>0.20</td>
</tr>
</tbody>
</table>

*In percent of initial resources.
Should pensions be progressive?

Table: Aggregate efficiency of alternative progressivity levels*

<table>
<thead>
<tr>
<th>model version</th>
<th>0.10</th>
<th>0.20</th>
<th>0.30</th>
<th>0.40</th>
<th>0.50</th>
<th>...</th>
<th>0.90</th>
<th>1.00</th>
</tr>
</thead>
<tbody>
<tr>
<td>base</td>
<td>0.05</td>
<td>0.08</td>
<td>0.06</td>
<td>0.04</td>
<td>-0.00</td>
<td>...</td>
<td>-0.33</td>
<td>-0.46</td>
</tr>
<tr>
<td>+ disability</td>
<td>0.18</td>
<td>0.31</td>
<td>0.35</td>
<td>0.32</td>
<td>0.22</td>
<td>...</td>
<td>-0.45</td>
<td>-0.60</td>
</tr>
<tr>
<td>+ retirement</td>
<td>0.17</td>
<td>0.31</td>
<td>0.37</td>
<td>0.34</td>
<td>0.23</td>
<td>...</td>
<td>-0.43</td>
<td>-0.58</td>
</tr>
</tbody>
</table>

*In percent of initial resources.
Should pensions be progressive?

- Positive insurance effect is stronger than the efficiency losses from labor supply distortions for a wide range of parameter combinations;
- Pensions should be more progressive at least in Germany;
- International trend towards less pension progressivity might be suboptimal;
Conclusions and Outlook

Central result of stochastic life-cycle models:

- Social security and progressive tax systems offer substantial insurance gains;
- Public policy has focussed too much on labor market and savings distortions!
- Trade-off between equity and efficiency might be overstated!
Conclusions and Outlook

Central result of stochastic life-cycle models:

- Social security and progressive tax systems offer substantial insurance gains;
- Public policy has focussed too much on labor market and savings distortions!
- Trade-off between equity and efficiency might be overstated!

Future work:

- Modelling institutional features such as housing and families;
- Modelling other sources of risk (aggregate risk) and intergenerational risk-sharing;