The Nonlinear Effects of Fiscal Policy*

Pedro Brinca Miguel Faria-e-Castro Miguel H. Ferreira
Nova SBE, CEF-UP FRB St. Louis Nova SBE
Hans Holter
University of Oslo
July 6, 2019

Abstract

We argue that the fiscal multiplier of government purchases is increasing in the spending shock, in contrast to what is assumed in most of the literature. The fiscal multiplier is largest for large positive government spending shocks and smallest for large contractions in government spending. We empirically document this fact using aggregate U.S. data. We find that a neoclassical, life-cycle, incomplete markets model calibrated to match key features of the US economy can explain this empirical finding. The mechanism hinges on the relationship between fiscal shocks, their form of financing, and the response of labor supply across the wealth distribution. The model predicts that the aggregate labor supply elasticity is increasing in the size of the fiscal shock, and this holds regardless of whether shocks are deficit- or balanced-budget financed (albeit through different mechanisms). We find evidence of our mechanism in micro data for the US.

Keywords: Fiscal Multipliers, Nonlinearity, Asymmetry, Heterogeneous Agents

JEL Classification: E21; E62

*We thank our discussant Pablo Cuba-Borda, as well as Vasco Carvalho, Giancarlo Corsetti, Dirk Krueger, Fernando M. Martin, and B. Ravikumar for very helpful comments and suggestions. For questions and comments, we also thank seminar participants at CEF.UP, ISEG, University of Minho, University of Coimbra, University of Oslo, the Royal Economic Society, the Federal Reserve System Committee on Macroeconomics, Federal Reserve Bank of Philadelphia, and Federal Reserve Bank of St. Louis. Pedro Brinca is grateful for financial support from the Portuguese Science and Technology Foundation, grant number SFRH/BPD/99758/2014, UID/ECO/00124/2013, and UID/ECO/00145/2013, POR Lisboa (LISBOA-01-0145-FEDER-007722 and Social Sciences Data Lab, Project 22209), and POR Norte (Social Sciences Data Lab, Project 22209). Miguel H. Ferreira is grateful for financial support from the Portuguese Science and Technology Foundation, grant number SFRH/BD/116360/2016. Hans A. Holter is grateful for financial support from the Research Council of Norway, grant number 219616; and the Oslo Fiscal Studies Program. The views expressed in this paper are those of the authors and do not reflect those of the Federal Reserve Bank of St. Louis or the Federal Reserve System. First version: November 2017.
1 Introduction

During the 2008-2009 financial crisis, many OECD countries adopted expansionary fiscal policies to stimulate economic activity. In many countries, these fiscal expansions were promptly followed by a period of austerity measures aimed at reducing the size of the resulting high levels of government debt. This era of fiscal activism inspired the economic literature to revive the classical debate on the size of the fiscal multiplier and its determinants, such as the state of the economy, income and wealth inequality, demography, tax progressivity, and the stage of development, among others.\footnote{See for example Auerbach and Gorodnichenko (2012), Ramey and Zubairy (2018), Brinca et al. (2016), Brinca et al. (2017), Hagedorn et al. (2016), Krueger et al. (2016), Basso and Rachedi (2017), Ferri`ere and Navarro (2018), Ilzetzki et al. (2013), and Faria-e-Castro (2018).}

However, most of the literature treats the effects of government interventions as being linear: contractionary and expansionary fiscal policies are assumed to have the same (symmetric) effects, and small and large shocks are assumed to have the same (linear) effects.\footnote{Some notable recent exceptions include Barnichon and Matthes (2017) and Fotiou (2017), who study the asymmetry and nonlinear effects of fiscal policy from an empirical perspective. Barnichon and Matthes (2017) find that contractionary multipliers are larger than expansionary ones during periods of slack for the US. Fotiou (2017) uses a panel of countries to assess how different types of fiscal contractions (i.e. tax or expenditure based) can have nonlinear effects.} In this paper, we argue that fiscal multipliers from government spending shocks are increasing in the shock. Larger expansions in government spending are associated with larger multipliers, and the converse is also true. We verify this fact empirically and show that it holds true in a calibrated neoclassical life-cycle model with incomplete markets and heterogeneous agents.

We begin our analysis by empirically documenting the sign and size dependence of fiscal multipliers in the US, which we show to be increasing in the government expenditure shock. To arrive at this conclusion, we utilize two different datasets and empirical methodologies, based on two leading empirical papers in the area. First, we focus on Ramey and Zubairy (2018), who use quarterly data for the US economy going back to 1889 and an identification scheme for government spending shocks that combines news about forthcoming variations
in military spending as in Ramey (2011b) and the identification assumptions of Blanchard and Perotti (2002). Using the projection method of Óscar Jordà (2005) and pooling observations across high- and low-unemployment periods, the authors find no evidence of a state dependent fiscal multiplier. We instead pool observations across periods with negative and positive fiscal shocks and find evidence that the fiscal multiplier is quantitatively and statistically different across negative and positive shocks: the 1-year (cumulative) multiplier for positive shocks is 0.47, and for negative shocks is 0.11.

We test the external validity of our results by using the fiscal consolidation episodes dataset from Alesina et al. (2015a), which comprises 16 OECD countries over the 1981-2014 period. Using a narrative approach based on Romer and Romer (2010) to identify exogenous fiscal consolidations, we find fiscal multipliers to be decreasing in the size of the consolidation — which is to say that fiscal multipliers are smaller for larger decreases in government spending.

Next, we rationalize these empirical findings in the context of a neoclassical life-cycle, heterogeneous agents model with incomplete markets, similar to Brinca et al. (2016) and Brinca et al. (2017). The model is calibrated to match key features of the US economy, such as the income and wealth distribution, hours worked, taxes, and Social Security. In our model, agents face uninsurable labor income risk that induces precautionary savings behavior. The equilibrium features a positive mass of agents who are borrowing constrained: as is well known, the labor supply elasticity of these agents is lower and their work hours are less responsive to contemporaneous and future changes in aggregate variables such as factor prices.

We study how the economy responds to different changes in government spending, ranging from large fiscal contractions to large fiscal expansions. An increase in government spending, financed by debt, generates a negative future income effect, as future taxes need to be raised. This effect is compounded by the crowding out of private capital: as the stock of capital falls, real wages also fall, reducing expected lifetime income (especially for agents with
lower savings). This negative shock to future income induces increased savings today, thus reducing the mass of agents at the borrowing constraint. Since unconstrained agents have a higher labor supply elasticity, aggregate labor supply expands more, leading to larger fiscal multipliers. Conversely, government spending contractions reduce precautionary motives and raise the mass of agents who are at the constraint. These agents’ labor supply responds less to the shock, leading to smaller fiscal multipliers. The larger the shock, the larger the overall change in the distribution of wealth, which explains the size dependence.\(^3\)

We show that balanced-budget fiscal expansions and contractions result in the same pattern of sign and size dependence, but via a different (but related) mechanism. Consider first the case of a fiscal expansion that is financed by a contemporary increase in taxes (so that debt is constant): the contemporary negative income effect elicits a much larger labor supply response by constrained agents. This negative income effect also brings to the constraint many agents who were close to it. This leftward shift therefore increases the aggregate labor supply response, resulting in a larger response of output and larger fiscal multiplier. Conversely, a balanced-budget fiscal contraction results in a contemporary decrease in taxes that moves agents away from the constraint. Since the agents who would reduce their labor supply the most are those at the constraint, the overall response of labor supply is reduced, resulting in a smaller fiscal multiplier.

We conclude by empirically testing the validity of this labor supply channel by inspecting micro-data. Using data from the Panel Study of Income Dynamics (PSID), we assess how the labor supply response to income shocks depends on wealth and how this relationship depends on the timing of the shock. We establish that for current income shocks, wealth-poor agents display a stronger labor supply response, with the opposite being true for future income shocks. This validates the model mechanics regarding the two different types of financing: for fiscal shocks that are financed through contemporary taxes/transfers, the labor supply response is strongest for poorer agents, while for fiscal shocks that are deficit-financed, the

\(^3\text{In related work, Athreya et al. (2017) study how redistributive policies can affect output due to heterogeneity in labor supply elasticities.}\)
response is stronger for wealthier agents.

The rest of the paper is organized as follows: Section 2 presents the empirical results on the aggregate non-linearity of fiscal multipliers. Section 3 argues that standard representative agent models can match the levels but not the nonlinear patterns that we find in the data. Section 4 introduces the main quantitative model, and Section 5 describes our calibration strategy. Section 7 presents the results from the quantitative model, and Section 8 empirically tests and validates the mechanisms using the PSID data. Section 9 concludes.

2 Empirical Analysis

In this section, we use aggregate time-series data to study the sign and size dependence of fiscal multipliers. The main analysis employs the historical dataset of Ramey and Zubairy (2018) for the US and the local projection method of Óscar Jordà (2005) to show that a positive government spending shock yields larger multipliers than a negative shock of the same magnitude. We also show that the fiscal multiplier depends not only on the sign but also on the size of the shock. Finally, we argue for the external validity of our findings by showing that they are also present in the Alesina et al. (2015a) dataset of consolidation episodes in OECD countries.

2.1 US Historical Data

To compare the multipliers across positive and negative fiscal shocks, a sufficiently large span of observations for both types of shocks is needed. Using US quarterly historical data addresses this problem, as it provides us with enough observations for both shocks. Additionally, historical 20th century data spans many periods of expansion and recession as well as different regimes for fiscal and monetary policy.

We employ the historical dataset constructed by Ramey and Zubairy (2018), which contains quarterly time series for the US economy ranging from 1889 to 2015. The dataset contains 255 observations for positive fiscal shocks and 249 observations for negative ones.
includes real GDP, the GDP deflator, government purchases, federal government receipts, population, the unemployment rate, interest rates, and defense news.

To identify exogenous government spending shocks, Ramey and Zubairy (2018) use two different approaches: (i) the defense news series proposed by Ramey (2011b), which consists of exogenous variations in government spending linked to political and military events that are identified using a narrative approach, and that are plausibly independent from the state of the economy, and (ii) shocks based on the identification hypothesis of Blanchard and Perotti (2002) that government spending does not react to changes in macroeconomic variables within the same quarter. Ramey and Zubairy (2018) argue that including both instruments simultaneously can bring advantages, as the Blanchard-Perotti shock is highly relevant in the short run (since it is the part of government spending not explained by lagged control variables), while defense news data are more relevant in the long run (as news happen several quarters before the spending actually occurs).

Figure 1 plots the time series for both shocks. Large variations in the 1910s, 1940s, and 1950s reflect defense spending for World Wars I and II and the Korean War. Smaller variations throughout the rest of the sample mostly reflect Blanchard-Perotti shocks. The figure highlights that there is ample variation in this measure of exogenous spending shocks, both in terms of sign and size.

![Figure 1: Government spending variation as a percentage of real GDP.](image)
It is instructive to start with a non-parametric approach and look for signs of a non-linear relationship between output and government spending in the data. Figure 2 shows the 1-quarter cumulative output response on the y-axis, and 1-quarter cumulative government spending on the x-axis, both normalized by trend GDP. The red line is a fitted quadratic polynomial: this line is increasing, which implies that the fiscal multiplier is positive; moreover, the line is convex, suggesting that output increases by relatively more for larger shocks to government spending. This convexity arises from a positive quadratic term, which is both quantitatively large (0.49), but also statistically significant at the 1% level.\footnote{Appendix A.1 presents the same figure at the 4- and 8-quarter horizons.}

Figure 2: 1-quarter cumulative real output on the y-axis and 1-quarter cumulative real government spending on the x-axis, both as a percentage of trend GDP. The red line represents the quadratic fitted polynomial between the two variables. The correlation between output and the first-order term of government spending is 0.44 (p-value 0.00) and with the second-order term of government spending is 0.49 (p-value 0.00).

2.1.1 Testing for Sign Dependence

To formally test for potential asymmetries between positive and negative fiscal shocks, we use the same methodology as Ramey and Zubairy (2018), which is based on the local projection method of Óscar Jordà (2005). This method consists of estimating the following equation for different time horizons h:
\[y_{t+h} = I_{t-1} [\alpha_{pos,h} + \Psi_{pos,h}(L) z_{t-1} + \beta_{pos,h} \text{shock}_t] \]
\[+ (1 - I_{t-1}) [\alpha_{neg,h} + \Psi_{neg,h}(L) z_{t-1} + \beta_{neg,h} \text{shock}_t] + \epsilon_{t+h}, \text{ for } h = 0, 1, 2, ... \tag{1} \]

where \(y \) is real GDP per capita divided by trend GDP, and \(z \) is a vector of lagged control variables, including real GDP per capita, government spending and tax revenues, all divided by trend GDP. \(z \) also includes the news variable to control for serial correlation. \(\Psi_h(L) \) is a polynomial of order 4 in the lag operator, and \(\text{shock}_t \) is the exogenous shock, which consists of the defense news variable and the Blanchard-Perotti spending shock. \(I \) is a dummy variable that is equal to 1 when the change in government spending is positive, \(\Delta g_{t-1} > 0 \).

Ramey and Zubairy (2018) follow a literature that highlights that in a dynamic environment, the multiplier should not be calculated as the peak of the output response to the initial government spending variation but rather as the integral of the output variation to the integral of the government spending variation.\(^6\) This method has the advantage of measuring all the GDP gains in response to government spending variations in a given period. Ramey and Zubairy (2018) propose estimating the following instrumental variables specification that allows for the direct estimation of the integral multiplier:

\[\sum_{j=0}^{h} y_{t+j} = I_{t-1} [\delta_{pos,h} + \phi_{pos,h}(L) z_{t-1} + m_{pos,h} \sum_{j=0}^{h} g_{t+j}] + \]
\[(1 - I_{t-1}) [\delta_{neg,h} + \phi_{neg,h}(L) z_{t-1} + m_{neg,h} \sum_{j=0}^{h} g_{t+j}] + \epsilon_{t+h}, \text{ for } h = 0, 1, 2, ... \tag{2} \]

where \(\text{shock}_t \) is used as an instrument to \(\sum_{j=0}^{h} g_{t+j} \), which is the sum of government spending from \(t \) to \(t + h \). This way, \(m_{pos,h} \) and \(m_{neg,h} \) can be directly interpreted as the cumulative multiplier at horizon \(h \) for either regime (positive or negative shocks).

\(^6\)See Mountford and Uhlig (2009), Uhlig (2010), and Fisher and Peters (2010).
Estimation results for specification (2) are presented in Table 1; these results show that the two multipliers are quantitatively different, with the multiplier for positive fiscal shocks larger than the multiplier for negative shocks. Ramey and Zubairy (2018) argue that the Blanchard-Perotti shocks may be anticipated, which can raise concerns of instrument relevance. To test if the multipliers are also statistically different across positive and negative fiscal shocks, we use Anderson et al. (1949) (AR) statistics, which are robust to weak instruments. As it is possible to see in the last column in Table 1, the instruments are not only quantitatively but also statistically different.\(^7\)

<table>
<thead>
<tr>
<th></th>
<th>Linear</th>
<th>Negative shocks</th>
<th>Positive shocks</th>
<th>AR p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>0.20</td>
<td>0.09</td>
<td>0.38</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>(0.17)</td>
<td>(0.32)</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>1–year cumulative multiplier</td>
<td>0.27</td>
<td>0.11</td>
<td>0.47</td>
<td>0.21</td>
</tr>
<tr>
<td></td>
<td>(0.14)</td>
<td>(0.29)</td>
<td>(0.12)</td>
<td></td>
</tr>
<tr>
<td>2–year cumulative multiplier</td>
<td>0.45</td>
<td>0.03</td>
<td>0.60</td>
<td>0.09</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.37)</td>
<td>(0.08)</td>
<td></td>
</tr>
<tr>
<td>3–year cumulative multiplier</td>
<td>0.56</td>
<td>0.16</td>
<td>0.68</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.36)</td>
<td>(0.07)</td>
<td></td>
</tr>
<tr>
<td>4–year cumulative multiplier</td>
<td>0.58</td>
<td>0.36</td>
<td>0.68</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.33)</td>
<td>(0.06)</td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Impact and cumulative multipliers for 1-, 2-, 3- and 4-year horizons for positive and negative fiscal shocks. The AR statistic measures whether the negative and positive shock multipliers are statistically different.

2.1.2 Testing for Size Dependence

The previous exercise shows that positive fiscal spending shocks generate larger output effects than negative ones, but is silent on whether these effects are different for shocks of different sizes (conditional on the sign). We proceed to investigate the size dependence of the fiscal

\(^7\)Barnichon and Matthes (2017) present results opposite to ours, with their estimates of the multiplier being larger for contractions than for expansions of government spending. This difference is related to different choices of methodology and instruments. First, Barnichon and Matthes (2017) do not combine defense news and Blanchard-Perotti shocks. As Ramey and Zubairy (2018) argue, the defense news variable fails to capture short-run dynamics, while the Blanchard-Perotti identification hypothesis fails to capture the long-run dynamics, and so it becomes important to use both instruments at the same time to accurately capture both short and long run dynamics. Second, when using the Blanchard-Perotti identification hypothesis, the authors deviate from what Ramey and Zubairy (2018) propose, by first estimating a VAR to identify the shock and then including the shock in the local projection regression while also including lagged control variables. As Ramey and Zubairy (2018) highlight, the Blanchard-Perotti shock is identified as the part of government expenditure not explained by lagged control variables. Including these lagged control variables in a regression with current government spending is enough to correctly identify the Blanchard-Perotti shock.
multiplier. We start by extending specification (2) with quadratic terms for both fiscal expansions and contractions:

\[
\sum_{j=0}^{h} y_{t+j} = I_{t-1} \left[\delta_{\text{pos},h} + \phi_{\text{pos},h}(L)z_{t-1} + m_{\text{pos},h} \sum_{j=0}^{h} g_{t+j} + m_{2\text{pos},h} \left(\sum_{j=0}^{h} g_{t+j} \right)^2 \right] + (3)
\]

\[
(1 - I_{t-1}) \left[\delta_{\text{neg},h} + \phi_{\text{neg},h}(L)z_{t-1} + m_{\text{neg},h} \sum_{j=0}^{h} g_{t+j} + m_{2\text{neg},h} \left(\sum_{j=0}^{h} g_{t+j} \right)^2 \right] + \epsilon_{t+h}, \text{ for } h = 0, 1, 2, ...
\]

If the effects of fiscal policy are size-dependent, coefficients \(m_{2\text{pos},h}\) and \(m_{2\text{neg},h}\) should be statistically different from zero. Table 2 reports the estimation results: in the short run, nonlinearities are stronger for fiscal expansions than for contractions, with the quadratic coefficient for fiscal expansions being statistically different from zero and indicating that the fiscal multiplier is largest for large expansions.

<table>
<thead>
<tr>
<th>Impact</th>
<th>(m_{\text{pos},h})</th>
<th>(m_{2\text{pos},h})</th>
<th>(m_{\text{neg},h})</th>
<th>(m_{2\text{neg},h})</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year</td>
<td>0.27</td>
<td>0.12</td>
<td>0.11</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.05)</td>
<td>(0.29)</td>
<td>(0.07)</td>
</tr>
<tr>
<td>2 years</td>
<td>0.25</td>
<td>0.08</td>
<td>0.16</td>
<td>0.03</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.04)</td>
<td>(0.29)</td>
<td>(0.06)</td>
</tr>
<tr>
<td>3 years</td>
<td>-0.28</td>
<td>0.12</td>
<td>-0.68</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>(0.47)</td>
<td>(0.06)</td>
<td>(0.79)</td>
<td>(0.14)</td>
</tr>
<tr>
<td>4 years</td>
<td>-0.95</td>
<td>0.16</td>
<td>-1.90</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>(0.75)</td>
<td>(0.07)</td>
<td>(1.20)</td>
<td>(0.18)</td>
</tr>
</tbody>
</table>

Table 2: Linear and quadratic terms for 1-, 2-, 3-, and 4- year horizons for positive and negative fiscal shocks.

Note that the inclusion of these quadratic terms means that \(m_{i,h}\) can no longer be interpreted as a multiplier. Due to size dependence, there is no longer such thing as “the” fiscal multiplier. An estimate for the marginal fiscal multiplier can be obtained as \(\hat{m}_{i,h} + 2 \times \hat{m}_{2i,h} \times \sum_{j=0}^{h} g_{t+j}\) for \(i = \text{pos, neg}\). Table 3 reports the multipliers for the average fiscal shock as well as the average \(\sum_{j=0}^{h} g_{t+j}\) in a fiscal expansion plus one standard deviation, and the average \(\sum_{j=0}^{h} g_{t+j}\) in a fiscal contraction minus one standard deviation. These estimated multipliers are, once again, larger for expansions than for contractions at short...
horizons. In the context of a fiscal expansion, raising \(\sum_{j=0}^{h} g_{t+j} \) by one standard deviation increases the multiplier from 0.31 to 0.37 on impact. During a fiscal contraction, reducing \(\sum_{j=0}^{h} g_{t+j} \) by one standard deviation only decreases the multiplier from 0.13 to 0.10, on average.

<table>
<thead>
<tr>
<th></th>
<th>Average negative minus st.dev.</th>
<th>Average negative</th>
<th>Average positive</th>
<th>Average positive plus st.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact mult.</td>
<td>0.10</td>
<td>0.13</td>
<td>0.31</td>
<td>0.37</td>
</tr>
<tr>
<td>1 year cum. mult.</td>
<td>0.16</td>
<td>0.18</td>
<td>0.32</td>
<td>0.42</td>
</tr>
<tr>
<td>2 year cum. mult.</td>
<td>0.12</td>
<td>0.19</td>
<td>0.32</td>
<td>0.48</td>
</tr>
<tr>
<td>3 year cum. mult.</td>
<td>-0.76</td>
<td>-0.20</td>
<td>-0.01</td>
<td>0.34</td>
</tr>
<tr>
<td>4 year cum. mult.</td>
<td>-2.07</td>
<td>-0.92</td>
<td>-0.48</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Table 3: Impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for positive and negative fiscal shocks.

An alternative way to illustrate size dependence is to calculate the fiscal multiplier for each observation in our sample, using the estimates in Table 2, and plot these estimates against the size of the respective fiscal shocks. This is done in Figure 3: the asymmetry is very clear, as multiplier estimates for negative spending shocks are much lower than those associated with positive spending shocks (about 0.15 vs. 0.35 on average). Size dependence has an interesting pattern that reflects our earlier estimates: the slope is very small (but positive) for negative spending shocks, and much steeper for positive ones. The range of multipliers is \([0.28, 0.57]\) for positive shocks, and \([0.11, 0.26]\) for negative ones.8

A third alternative test of size dependence involves including a quadratic term in a linear specification similar to equation (2), without pooling observations across periods of fiscal expansions and contractions. The link between the sign and the size of the shock and the fiscal multiplier holds under this alternative approach. Results are robust to pooling observations above and below the median positive or the median negative shock, with the fiscal multiplier being largest for large expansions and smallest for large contractions. All these robustness checks are reported in Appendix A.1, in Tables 16 and 17.

8Figures 18 - 20 in Appendix A.1 show the same relation between fiscal shocks and multipliers at the 1, 2, and 3-year horizons. While for those horizons the multiplier is always increasing with the shock, independent of the shock being positive or negative, the slope is always smaller for negative shocks.
Figure 3: Impact multiplier vs. fiscal shock: On the y-axis we have the impact multiplier, and on the x-axis we have the size of the fiscal shock. For negative shocks the correlation is 0.05 (p-value 0.43), while for positive shocks it is 0.37 (p-value 0.00).

2.1.3 Robustness and Other Tests

Our results may be sensitive to the choice of specification and sample. To assuage these concerns, we perform several robustness checks and the results can be found in Appendix A.1. In particular, we show that our results hold even when excluding World War II as well as considering only a post-1947 sample. We also show that our results are robust to including additional controls, or the number of lags for the controls.

We also test for nonlinear effects of fiscal policy on other macroeconomic variables: consumption and investment. There is a large literature on the effects of fiscal shocks on different components of private expenditure, e.g. Ramey (2012), Blanchard and Perotti (2002), and Ramey (2011a). While there is a consensus in the literature that government spending crowds out investment, the effects on consumption are less consensual. We use the Federal Reserve Economic Data (FRED) series for nominal consumption and investment, starting in 1947, and estimate equation (3) with private consumption and private investment as left-hand-side variables. Results for consumption and investment (Tables 20 and 22 in Appendix
A.1, respectively) indicate that, at all horizons, the multipliers are consistently larger for fiscal expansions than contractions and that these multipliers are largest for large expansions and smallest for large contractions. Notice also that while the multiplier for consumption is positive on impact, becoming negative at the end of year 1, the multiplier for investment is always negative, which is consistent with the consensus in the literature.

We also test whether our results hold in a specification where we do not pool observations across fiscal expansion and contraction episodes and simply include a quadratic term. These results (Tables 21 and 23 in Appendix A.1) are in line with the previous ones: the consumption multiplier is positive on impact and then becomes negative, and the investment multiplier is always negative, with multipliers being increasing in the size of the shock.

Finally, we test if our results hold for different thresholds for pooling observations. Results from pooling observations across positive and negative shocks show the multiplier to be increasing in the size of the shock. This relationship would suggest that, independently of the threshold chosen for polling observations, we should find multipliers larger for shocks above the threshold. Figures 21 and 22 in Appendix A.1 show that the results hold across different thresholds used, with larger shocks yielding larger multipliers.

2.2 IMF Shocks

In this section we provide supporting evidence that the nonlinearities of the fiscal multiplier are not only related to the sign of the shock but also to the absolute variation. In particular, we show that larger fiscal consolidations (i.e., more negative spending shocks) are associated with smaller multipliers. This result is shown in the context of the Alesina et al. (2015a) annual dataset of fiscal consolidation episodes, which includes 16 OECD countries and ranges from 1981 to 2014.9

Alesina et al. (2015a) expand the original dataset of Devries et al. (2011) with exogenous fiscal consolidations episodes, known as IMF shocks. Devries et al. (2011) use the narrative

9The dataset includes Australia, Austria, Belgium, Canada, Germany, Denmark, Spain, Finland, France, Japan, the United Kingdom, the US, Ireland, Italy, Portugal and Sweden.
approach of Romer and Romer (2010) to identify exogenous fiscal consolidations, i.e., consolidations driven uniquely by the desire to reduce budget deficits. The use of the narrative approach filters out all policy actions driven by the business cycle, guaranteeing that the identified consolidations are independent from the current state of the economy.

Besides expanding the dataset of Devries et al. (2011), Alesina et al. (2015a) use the methodological innovation introduced by Alesina et al. (2015b), who point out that a fiscal adjustment is a multi-year plan rather than an isolated change and consequently results in both unexpected policies and policies that are known in advance. Ignoring the link between both expected and unexpected policies may yield biased results.

Alesina et al. (2015a) define a fiscal consolidation as deviations of public expenditure relative to their level if no policy had been adopted plus expected revenue changes stemming from tax code revisions. Moreover, fiscal consolidations that were not implemented are not included in the dataset, so all included fiscal consolidation episodes are assumed to be fully credible.

We estimate the following specification:

$$\Delta y_{i,t} = \alpha_i + \beta_1 e_{i,t}^u + \beta_2 (e_{i,t}^u)^2 + \beta_3 e_{i,t}^a + \beta_4 (e_{i,t}^a)^2$$

where $\Delta y_{i,t}$ is the output growth rate in country i and year t, $e_{i,t}^u$ is the unanticipated fiscal consolidation shock, and $e_{i,t}^a$ is the anticipated fiscal consolidation shock. We include squared terms to capture the nonlinear effects of fiscal shocks. We follow Alesina et al. (2015a) and estimate the equation using seemingly unrelated regressions (SUR), imposing cross-country restrictions on the β coefficients.

Results are presented in Table 4 and validate our hypothesis that the nonlinear effects of fiscal shocks are not only related to the sign of the shock but also to the size. The coefficients associated with the linear terms of both announced and unexpected fiscal consolidations are negative, indicating that fiscal consolidations lead to a decrease in output. However, the coefficients of interest, β_2 and β_4, have a positive sign, meaning that the larger the consoli-
dation, the smaller the effect on output and, hence, the fiscal multiplier (even though only the coefficient associated with the squared term of announced fiscal consolidations is statistically significant). This coefficient is not only statistically significant but also economically meaningful, as an increase in one standard deviation of announced consolidations leads to a decrease of 80% in the fiscal multiplier.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_1</td>
<td>-0.004**</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td>β_2</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
</tr>
<tr>
<td>β_3</td>
<td>-0.024***</td>
</tr>
<tr>
<td></td>
<td>(0.002)</td>
</tr>
<tr>
<td>β_4</td>
<td>0.007***</td>
</tr>
<tr>
<td></td>
<td>(0.001)</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.1

Table 4: Non-linear effects of fiscal consolidation shocks.

3 Fiscal Policy in Representative Agent Environments

We are interested in understanding what mechanisms generate the nonlinearities and asymmetries that we empirically documented in the previous section. To do so, we proceed incrementally and show that standard representative agent models are unable to generate the nonlinearities that we find in the data. Even adding standard ingredients that are known to amplify the effects of fiscal policy, such as nominal rigidities or adjustment costs of investment, is not enough to match the data.

3.1 Real Business Cycle Model

Set-up

We start with the textbook real business cycle (RBC) model, where preferences of the representative agent are separable in consumption and labor, and the representative firm produces according to a Cobb-Douglas function that depends on capital and labor. The framework
follows Cooley and Prescott (1995) and the details of the model are presented in Appendix B.\footnote{The main deviations from the cited benchmark are separable preferences in consumption and leisure and no trend growth for TFP.}

We augment the model with a government that engages in socially wasteful spending. The aggregate resource constraint can then be written as

\[C_t + K_t - (1 - \delta)K_{t-1} + G_t = z_t K_{t-1}^\alpha N_t^{1-\alpha} \]

where \(C_t \) is aggregate consumption, \(K_{t-1} \) is the current stock of capital, \(N_t \) is labor, and \(G_t \) is government spending. The Ricardian equivalence ensures that the mode of financing is irrelevant for allocations. The calibration is standard and can be found in Appendix B.

Fiscal Shock

We assume that government spending follows an AR(1) in logs:

\[
\log G_t = (1 - \rho_G) \log G_{SS} + \rho_G G_{t-1} + \epsilon_t^G
\]

where \(\rho_G \) is assumed to be 0.9 at a quarterly frequency, consistent with the estimates of Nakamura and Steinsson (2014) for military procurement spending.

Experiment

We consider a range of values for \(\epsilon_t^G \) that correspond to changes from −10% to 10% of steady-state government spending on impact. The resulting fiscal multipliers, at different horizons, are plotted in Figure 4. We adopt the standard definition of discounted integral multiplier that accounts for the cumulative effects of fiscal policy on output at a given horizon \(h \):

\[
\mathcal{M}_h = \sum_{i=0}^{h} \prod_{j=0}^{i} R_j^{-1}(Y_i - Y_{SS}) \sum_{i=0}^{h} \prod_{j=0}^{i} R_j^{-1}(G_i - G_{SS})
\]

This corresponds to the traditional definition of the multiplier measured at impact for \(h = 0 \).
Figure 4: Representative agent, RBC model: fiscal multipliers as a function of the size of the variation in G, at different horizons. The blue line represents G contractions, while the red line represents G expansions.

The figure shows that, as is well known, the basic RBC model is not able to match the size of the fiscal multipliers in the data. Additionally, the standard model implies that the fiscal multiplier is roughly constant with the change in G: the model is not able to capture the nonlinearities or asymmetries that we find in the data. In fact, the model predicts the multiplier to be slightly decreasing with the change in G, violating the asymmetric pattern that we find. These results hold regardless of the horizon.

3.2 Nominal Rigidities

One standard way of generating fiscal multipliers that more closely match those measured in the data is by providing a role for aggregate demand to affect economic activity, which can be achieved by including nominal rigidities. We augment the model to include quadratic costs of price adjustment for firms, which generates a Phillips curve relating output and inflation, as well as a Taylor rule for the central bank. Again, the model ingredients and
calibration are standard, and can be found in Appendix B.

Figure 5 shows the outcome of the same experiment in the context of a New Keynesian model with investment: again, multipliers are low and do not vary with the size or sign of the shock in an economically meaningful way. For this particular example, we use a standard Volcker-Greenspan calibration for the Taylor rule, which is known to produce relatively low multipliers.11 It is well known that the level of the fiscal multiplier is very sensitive to the specific parametrization of the Taylor rule. What is important is that alternative parameterizations that raise the level of the fiscal multiplier, such as making the central bank less responsive to changes in inflation, do not alter the fact that the multiplier is essentially constant with respect to the sign and size of the shock to G_t.

![Figure 5: Representative agent, New Keynesian model: fiscal multipliers as a function of the size of the variation in G, at different horizons. The blue line corresponds to G contractions, while the red line represents G expansions.](image)

11In particular, we assume a standard Taylor rule with interest rate smoothing:

$$
\log R_t = \rho_R \log R_{t-1} + (1 - \rho_R)[\log R_{SS} + \phi_\Pi (\log \Pi_t - \log \Pi_{SS}) + \phi_Y (\log Y_t - \log Y_{SS})]
$$

with $\rho_R = 0.80, \phi_\Pi = 1.50, \phi_Y = 0.50$.

17
3.3 Adjustment Costs of Investment

One reason why the basic RBC and New Keynesian models with capital are unable to generate large multipliers is the high sensitivity of investment to government spending shocks via movements in the real rate. As discussed, one way that New Keynesian models partially address this is by making the central bank, who sets the real rate, less responsive to output and inflation. Still, in order to generate multipliers of empirically plausible magnitudes, one would need to parametrize the Taylor rule to be at odds with a multitude of empirical estimates (at least prior to 2007, which is the sample considered in the previous section).

A direct way to address this excess sensitivity of investment is to introduce adjustment costs, which have become a standard feature of medium-scale dynamic stochastic general equilibrium (DSGE) models. Adjustment costs of investment are able to generate empirically plausible fiscal multipliers while maintaining standard assumptions for monetary policy.

Figure 6 repeats the baseline experiment by introducing adjustment costs of investment in the New Keynesian specification. It shows that, while raising multipliers, adjustment costs of investment are not sufficient to generate empirically plausible levels for the multipliers or for the nonlinearities. Importantly, however, they help generate the correct asymmetry: fiscal multipliers now become slightly increasing in the shock to G, but this increase is quantitatively very small.

An increase in government spending affects the supply of the two factors of production with opposing effects: on one hand, real interest rates rise, which crowds out investment and causes the capital stock to fall; on the other hand, the negative income effect expands labor supply. Adjustment costs of investment dampen the sensitivity of investment to real rates, thereby curbing the first effect and raising fiscal multipliers. Still, none of this is sufficient to match either the levels or the patterns that are detected in the data.12

12In the appendix, we show that the extreme case of infinite adjustment costs substantially helps in raising the levels, but does not generate any meaningful nonlinearity either.
In the previous sections, we presented empirical evidence that the macroeconomic effects of a fiscal spending shock depend both on the size and sign of the shock. In this section, we present a quantitative model that allows us to rationalize these findings. The model follows closely Brinca et al. (2016) and Brinca et al. (2017).

Technology

The production sector is standard, with the representative firm having access to a Cobb-Douglas production function,

\[
Y_t(K_t, L_t) = K_t^\alpha [L_t]^{1-\alpha}
\]

(6)
where L_t is the labor input, measured in efficiency units, and K_t is the capital input. The law of motion for capital is

$$K_{t+1} = (1 - \delta)K_t + I_t$$

(7)

where δ is the capital depreciation rate and I_t is the gross investment. Firms choose labor and capital inputs each period in order to maximize profits:

$$\Pi_t = Y_t - w_t L_t - (r_t + \delta) K_t.$$

(8)

Under a competitive equilibrium, factor prices are paid their marginal products:

$$w_t = \frac{\partial Y_t}{\partial L_t} = (1 - \alpha) \left(\frac{K_t}{L_t} \right)^\alpha$$

(9)

$$r_t = \frac{\partial Y_t}{\partial K_t} - \delta = \alpha \left(\frac{L_t}{K_t} \right)^{1-\alpha} - \delta$$

(10)

Demographics

The economy is populated by J overlapping generations of households. Peterman and Sager (2016) highlight the importance of having a life-cycle model when assessing the effects of government debt. Households start their life at age 20 and retire at age 65, after which they face an age-dependent probability of dying, $\pi(j)$. They die with certainty at age 100. $j \in \{0.25, \ldots, 81.0\}$ is the household’s age (minus 19.75). A period in the model corresponds to 1 quarter, and so households work for 180 quarters (45 years). We assume no population growth and normalize the size of each new cohort to 1.

$$\omega(j) = 1 - \pi(j)$$

defines the age-dependent probability of surviving; applying the law of large numbers, this means that the mass of retired agents at any given period is equal to $\Omega_j = \prod_{q=65}^{J-1} \omega(q)$.

Households also differ with respect to permanent ability levels that are assigned at birth, persistent idiosyncratic productivity shocks, asset holdings, and discount factors that are uniformly distributed and can take three distinct values, $\beta \in \{\beta_1, \beta_2, \beta_3\}$. Working-age agents choose how much to work n, consume c, and save k to maximize utility. Retired
households make consumption and saving decisions and receive a retirement benefit Ψ_t.

Stochastic survivability after retirement implies that a share of households leave unintended bequests Γ. We assume that these bequests are uniformly redistributed across living households. We also assume that retired households value these bequests in their utility in order to better match the data on retired household wealth.

Labor Income

The wage received by a household depends on three different factors that determine the number of labor efficiency units each household is endowed with in each period: age j, permanent ability $a \sim N(0, \sigma_a^2)$, and an idiosyncratic productivity shock u, which follows an AR(1) process:

$$u' = \rho u + \epsilon, \quad \epsilon \sim N(0, \sigma_\epsilon^2)$$ \hfill (11)

Labor income per hour worked depends on the wage rate per efficiency unit of labor w; this income is given by

$$w_i(j, a, u) = we^{\gamma_1 j + \gamma_2 a + \gamma_3 u}$$ \hfill (12)

$\gamma_i, i = 1, 2, 3$ are calibrated directly from the data to capture the age profile of labor income.

Preferences

Household utility $U(c, n)$ is standard: time-additive, separable, and isoelastic, with $n \in (0, 1]$:

$$U(c, n) = \frac{c^{1-\sigma} - \chi n^{1+\eta}}{1 - \sigma}$$ \hfill (13)

The utility function for retired households also depends on bequests:

$$D(k) = \varphi \log(k)$$ \hfill (14)
Government

The government runs a balanced budget social security system that operates independently from the main government budget constraint. Social security levies taxes on employees’ gross labor income at rate τ_{ss} as well as on the representative firm at rate $\bar{\tau}_{ss}$. The proceeds are used to pay retirement benefits, Ψ_t.

In the main government budget, revenues include flat-rate taxes over consumption τ_c and capital income τ_k. Labor income taxes follow a non-linear schedule as in Benabou (2002):

$$\tau(y) = 1 - \theta_0 y^{-\theta_1}$$

where θ_0 and θ_1 define the level and progressivity of the tax schedule, respectively; y is the pre-tax labor income; and $y_a = [1 - \tau(y)]y$ is the after tax labor income.

Tax revenues from consumption, capital, and labor income are used to finance public consumption of goods G_t, public debt interest expenses rB_t, and lump sum transfers g_t.

Denoting social security revenues by R^{ss} and the other tax revenues as R, the government budget constraint is defined as

$$g \left(45 + \sum_{j \geq 65} \Omega_j \right) = R - G - rB,$$

$$\Psi \left(\sum_{j \geq 65} \Omega_j \right) = R^{ss}$$

Recursive Formulation of the Household Problem

In a given period, a household is defined by its age j, asset position k, time discount factor β, permanent ability a, and persistent idiosyncratic productivity u. Given this set of states, a working-age household chooses consumption c, work hours n, and future asset holdings k', to maximize the present discounted value of utility. The problem can be written recursively
as

\[V(k, \beta, a, u, j) = \max_{c,k',n} \left[U(c, n) + \beta \mathbb{E}_{\omega'} [V(k', \beta, a, u', j + 1)] \right] \]

s.t.:

\[c(1 + \tau_c) + k' = (k + \Gamma) [1 + r(1 - \tau_k)] + g + Y^L \]

\[Y^L = \frac{nw(j, a, u)}{1 + \tau_{ss}} \left(1 - \tau_{ss} - \tau_l \left(\frac{nw(j, a, u)}{1 + \tau_{ss}} \right) \right) \]

\[n \in [0,1], \quad k' \geq -b, \quad c > 0 \] (18)

where \(Y^L \) is the household’s labor income net of social security (paid by both the employee and the employer) and labor income taxes. The problem of a retired household differs on three dimensions: the age dependent probability of dying \(\pi(j) \), the bequest motive \(D(k') \), and labor income replaced by retirement benefits. We can write the problem as

\[V(k, \beta, j) = \max_{c,k'} \{ U(c, n) + \beta [1 - \pi(j)]V(k', \beta, j + 1) + \pi(j)D(k') \} \]

s.t.:

\[c(1 + \tau_c) + k' = (k + \Gamma) [1 + r(1 - \tau_k)] + g + \Psi, \]

\[k' \geq 0, \quad c > 0 \] (19)

Stationary Recursive Competitive Equilibrium

Let the distribution over the individual states be denoted \(\Phi(k, \beta, a, u, j) \). Then, we can define a stationary recursive competitive equilibrium (SRCE) as follows:

1. Taking the factor prices and the initial conditions as given, the value function \(V(k, \beta, a, u, j) \) and policy functions \(c(k, \beta, a, u, j), k'(k, \beta, a, u, j), n(k, \beta, a, u, j) \) solve the households’ optimization problems.

2. Markets clear:

\[K + B = \int k d\Phi \]

23
\[L = \int n(k, \beta, a, u, j) \, d\Phi \]
\[\int c \, d\Phi + \delta K + G = K^\alpha L^{1-\alpha} \]

3. Factor prices are paid their marginal productivity:
\[w = (1 - \alpha) \left(\frac{K}{L} \right)^\alpha \]
\[r = \alpha \left(\frac{K}{L} \right)^{\alpha-1} - \delta \]

4. The government budget balances:
\[g \int d\Phi + G + rB = \int \left[\tau_k r(k + \Gamma) + \tau_c c + n \tau_l \left(\frac{nw(a, u, j)}{1 + \tilde{\tau}_{ss}} \right) \right] \, d\Phi \]

5. The social security system budget balances:
\[\Psi \int_{j \geq 65} d\Phi = \tilde{\tau}_{ss} + \tau_{ss} \left(\int_{j < 65} nw \, d\Phi \right) \left(\int \frac{1}{1 + \tilde{\tau}_{ss}} \, d\Phi \right) \]

6. The assets of the dead are uniformly distributed among the living:
\[\Gamma \int \omega(j) \, d\Phi = \int [1 - \omega(j)] \, kd\Phi \]

Fiscal Experiment and Transition

Our fiscal experiments consist of variations of government spending \((G)\) of different signs and sizes (measured as a percentage of GDP). For permanent shocks, we consider only deficit financing experiments whereby taxes and transfers are unchanged and public debt changes permanently. For temporary shocks, we consider both deficit financing experiments where taxes and transfers are unchanged for a certain number of periods and then debt returns to its original level, and balanced-budget experiments where debt remains constant. In sum,
for permanent changes in G we consider the transition to a new SRCE with a different
debt-to-GDP ratio, while for temporary changes the economy returns to the same SRCE.

We define the equilibrium transition as follows. For a given level of initial capital stock,
initial distribution of households, and initial taxes, respectively, K_0, Φ_0, and $\{\tau_l, \tau_c, \tau_k, \tau_{ss}, \tilde{\tau}_{ss}\}_{t=1}^{\infty}$;
a competitive equilibrium is a sequence of individual functions for the household, $\{V_t, c_t, k'_t, n_t\}_{t=1}^{\infty}$;
production plans for the firm, $\{K_t, L_t\}_{t=1}^{\infty}$; factor prices, $\{r_t, w_t\}_{t=1}^{\infty}$; government transfers,
$\{g_t, \Psi_t, G_t\}_{t=1}^{\infty}$; government debt, $\{B_t\}_{t=1}^{\infty}$; inheritance from the dead, $\{\Gamma_t\}_{t=1}^{\infty}$; and mea-
sures $\{\Phi_t\}_{t=1}^{\infty}$; such that the following hold for all t:

1. For given factor prices and initial conditions, the value function $V(k, \beta, a, u, j)$ and the
policy functions, $c(k, \beta, a, u, j)$, $k'(k, \beta, a, u, j)$, and $n(k, \beta, a, u, j)$ solve the consumers’
optimization problem.

2. Markets clear:

\[
K_{t+1} + B_t = \int k_t d\Phi_t
\]
\[
L_t = \int (n_t(k_t, \beta, a, u, j)) d\Phi_t
\]
\[
\int c_t d\Phi_t + K_{t+1} + G_t = (1 - \delta)K_t + K^\alpha L^{1-\alpha}
\]

3. The factor prices are paid their marginal productivity:

\[
w_t = (1 - \alpha) \left(\frac{K_t}{L_t} \right)^\alpha
\]
\[
r_t = \alpha \left(\frac{K_t}{L_t} \right)^{\alpha-1} - \delta
\]

4. The government budget balances:

\[
g_t \int d\Phi_t + G_t + r_t B_t = \int \left(\tau_k r_t(k_t + \Gamma_t) + \tau_c c_t + n_t \tau_l \left(\frac{n_t w_t(a, u, j)}{1 + \tilde{\tau}_{ss}} \right) \right) d\Phi_t + (B_{t+1} - B_t)
\]
5. The social security system balances:

\[\Psi_t \int_{j \geq 65} d\Phi_t = \frac{\bar{\tau}_{ss} + \tau_{ss}}{1 + \bar{\tau}_{ss}} \left(\int_{j < 65} n_tw_t d\Phi_t \right) \]

6. The assets of the dead are uniformly distributed among the living:

\[\Gamma_t \int \omega(j) d\Phi_t = \int (1 - \omega(j)) k_t d\Phi_t \]

7. The distribution follows an aggregate law of motion:

\[\Phi_{t+1} = \Upsilon_t(\Phi_t) \]

5 Calibration

We calibrate the starting SRCE of our model to the US economy. Some parameters are calibrated directly from empirical counterparts, while others are calibrated using the simulated method of moments (SMM) so that the model matches key features of the US economy. Section D in the appendix contains a table that summarizes the values for the standard parameters.

Wages

The wage profile through the life cycle (12) is calibrated directly from the data. We run the following regression, using data from the Luxembourg Income and Wealth Study:

\[\ln(w_i) = \ln(w) + \gamma_1 j + \gamma_2 j^2 + \gamma_3 j^3 + \varepsilon_i \] \hspace{1cm} (20)

where \(j \) is the age of individual \(i \).

To estimate parameters \(\rho \) and \(\sigma_\varepsilon \) we use PSID yearly data and run equation (20). We then use the residuals of the equation to estimate both parameters for a yearly periodicity.
To transform the parameters from yearly to quarterly, we raise ρ to $\frac{1}{4}$ and divide σ_ϵ by 4. σ_a is chosen using SMM to match the variance of $\ln(w)$.

Preferences

We set the Frisch elasticity of labor supply to 1, as in Brinca et al. (2016) and Brinca et al. (2017), an average number in the literature. The utility from bequests, disutility of work, and the three discount factors (φ, χ, β_1, β_2, β_3) are among the parameters calibrated to match key moments in the data. The corresponding moments are the ratio of wealth owned by households in the age cohort 75-80 years old relative to an average household, the share of hours worked, and the three quartiles of the wealth distribution, respectively.

Taxes and Social Security

We use the labor income tax function of Benabou (2002) to capture the progressivity of both the tax schedule and government transfers. To estimate the parameter θ_1 for the US, we use OECD data on labor income taxes and estimate the equation for different family types. We then weight the value of each parameter by the weight of each family type in the overall population.

For the social security rates we assume no progressivity. Both of the social security tax rates, the one paid by the employer and the one paid by the employee, are set to 7.65%, using the value from the bracket covering most incomes. Finally, consumption and capital tax rates are set to 23.3% and 1.55%, respectively, as in Trabandt and Uhlig (2011).

Following Hagedorn et al. (2016), we set transfers g to be 7% of GDP. θ_0 is set so that labor tax revenues clear the government budget.

Parameters Calibrated Endogenously

Some parameters that do not have any direct empirical counterparts are calibrated using the SMM. These are the bequest motive, discount factors, borrowing limit, disutility from working, and variance of permanent ability. The SMM is set so that it minimizes the following
loss function:

\[L(\varphi, \beta_1, \beta_2, \beta_3, b, \chi, \sigma_\epsilon) = ||M_m - M_d|| \] (21)

with \(M_m \) and \(M_d \) being the moments in the model and in the data, respectively.

We use seven data moments to choose seven parameters, so the system is exactly identified. The seven moments we select in the data are (i) the ratio of wealth owned by households in the age cohort 75-80 years old relative to an average household, (ii) the share of hours worked, (iii-v) the three quartiles of the wealth distribution, (vi) the variance of log wages, and (vii) the capital-to-output ratio. Table 6 presents the calibrated parameters and Table 5 presents the calibration fit.

Table 5: Calibration Fit

<table>
<thead>
<tr>
<th>Data moment</th>
<th>Description</th>
<th>Source</th>
<th>Data Value</th>
<th>Model Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>75-80/all</td>
<td>Share of wealth households aged 75-80</td>
<td>LWS</td>
<td>1.513</td>
<td>1.513</td>
</tr>
<tr>
<td>K/Y</td>
<td>Capital-output ratio</td>
<td>PWT</td>
<td>12.292</td>
<td>12.292</td>
</tr>
<tr>
<td>Var(ln w)</td>
<td>Yearly variance of log wages</td>
<td>LIS</td>
<td>0.509</td>
<td>0.509</td>
</tr>
<tr>
<td>(\bar{n})</td>
<td>Fraction of hours worked</td>
<td>OECD</td>
<td>0.248</td>
<td>0.248</td>
</tr>
<tr>
<td>Q_{25}, Q_{50}, Q_{75}</td>
<td>Wealth quartiles</td>
<td>LWS</td>
<td>-0.014, 0.004, 0.120</td>
<td>-0.009, 0.000, 0.124</td>
</tr>
</tbody>
</table>

Table 6: Parameters Calibrated Endogenously

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\varphi)</td>
<td>21.26</td>
<td>Bequest utility</td>
</tr>
<tr>
<td>(\beta_1, \beta_2, \beta_3)</td>
<td>0.999, 0.987, 0.951</td>
<td>Discount factors</td>
</tr>
<tr>
<td>(\chi)</td>
<td>11.1</td>
<td>Disutility of work</td>
</tr>
<tr>
<td>(b)</td>
<td>0.90</td>
<td>Borrowing limit</td>
</tr>
<tr>
<td>(\sigma_\epsilon)</td>
<td>0.695</td>
<td>Variance of ability</td>
</tr>
</tbody>
</table>

6 Intuition: Labor Supply and Credit Constraints

To build intuition on why credit constraints can generate asymmetric effects for fiscal policy shocks, we consider a simplified version of the model described in the previous section, where agents are infinitely lived, taxes are lump sum, and there is no social security or discount factor heterogeneity. Households solve a simplified problem given by
\[V(s^i_t) = \max_{c^i_t, k^i_{t+1}, n^i_t} \left[U(c^i_t, n^i_t) + \beta \mathbb{E}_t[V(s^i_{t+1})|s^i_t] \right] \]

s.t.
\[c^i_t + k^i_{t+1} = k^i_t (1 + r_t) + w_t u^i_t n^i_t - T_t \]
\[k^i_{t+1} \geq -b \]
\[s^i_t = (k^i_t, u^i_t) \]

where \(u^i_t \) is some idiosyncratic productivity shock.

In the standard neoclassical model, the response of output to changes in government purchases depends only on changes in factor employment: capital and labor. Since capital is fixed in the short run, the impact multiplier is determined solely by changes in labor supply.\(^{13}\)

We start by decomposing the different channels through which a change in government spending can affect individual labor supply, given individual states \(s^i_t \) and the aggregate state \(X_t \).\(^{14}\)

Proposition 6.1. The (total) response of labor supply \(n(s^i_t) \) to a change in current government consumption \(G_t \) is given by

\[
\frac{dn^i_t}{dG_t} = \left[\alpha_1(s^i_t; X_t) + \alpha_2(s^i_t; X_t) \Lambda_1(s^i_t; X_t)(1 - 1^i_t) \right] \frac{dw^i_t}{dG_t} \\
+ \alpha_2(s^i_t; X_t)(1 - (1 - 1^i_t) \Lambda_2(s^i_t; X_t)) \left(\frac{dT_t}{dG_t} - k^i_t \frac{dr_t}{dG_t} \right) \\
+ \alpha_2(s^i_t; X_t)(1 - 1^i_t) F(s^i_t; X_t)
\]

where \(1^i_t = 1 \) if the individual is constrained at \(t \) and zero otherwise; \(\alpha_1, \alpha_2, \Lambda_1, \Lambda_2 > 0 \) are time-invariant functions of the individual’s current states \(s^i_t \) and \(X_t \); and \(F \) is a time-

\(^{13}\)Athreya et al. (2017) provide an extensive analysis in the context of general equilibrium models with incomplete markets such as this one.

\(^{14}\)All derivations are in the appendix.
invariant function of future changes in wages, interest rates, and taxes.

The labor supply of constrained agents does not respond to future changes in factor prices and taxes contained in F. Since $\alpha_2 > 0$, constrained agents react relatively less to changes in current wages, but relatively more to changes in the current non-labor component of income (taxes and interest rates). In other words, constrained agents display a lower labor supply elasticity with respect to both current and future wages. The relative labor supply response between constrained and unconstrained agents will then crucially depend on the mode of financing: balanced budget fiscal expansions, for example, should trigger a relatively larger response by constrained agents, as such expansions involve changes in current taxes.

Proposition 6.2. The effects of future changes in taxes and factor prices on individual labor supply $F(s^i_t; X_t)$ can be written recursively as

$$
F(s^i_t; X_t) = -\Lambda_3(s^i_t; X_t)[1 - \Lambda_2(s^i_{t+1}; X_{t+1})] \frac{dw_{t+1}}{dG_t} + \left[\Lambda_4(s^i_t; X_t) + \Lambda_5(s^i_t; X_t)\Lambda_2(s^i_{t+1}; X_{t+1})k^i_{t+1}\right] \frac{dr_{t+1}}{dG_t} + \Lambda_5(s^i_t; X_t)[1 - \Lambda_2(s^i_{t+1}; X_{t+1})] \frac{dT_{t+1}}{dG_t} + \Lambda_5(s^i_t; X_t)F(s^i_{t+1}; X_{t+1})
$$

where

$$
\Lambda_3(s^i_t; X_t)[1 - \Lambda_2(s^i_{t+1}; X_{t+1})] \geq 0
$$

$$
\Lambda_5(s^i_t; X_t)[1 - \Lambda_2(s^i_{t+1}; X_{t+1})] \geq 0
$$

$$
\Lambda_5(s^i_t; X_t) \geq 0
$$

The above proposition shows that current labor supply responds positively to increases in future taxes (i.e., unconstrained agents observe the Ricardian equivalence) and negatively to increases in future wages. Assuming that an increase (decrease) in government spending
causes a standard crowding-out (-in) effect on investment, the capital stock decreases (increases), and future wages decrease (increase). This means that the labor supply response on impact for unconstrained agents reflects not only the standard Ricardian effects but also the path of future wages. These two forces are absent from the labor supply response of constrained agents. Therefore, deficit financed fiscal expansions can potentially have a much larger effect on the labor supply for unconstrained agents, who internalize the present discounted value of the fiscal costs as well as of the fall in wages.

This differential response of labor supply between constrained and unconstrained agents is the key mechanism that drives our main results: regardless of the financing scheme, if an increase in government purchases changes the mass of constrained agents differently than a decrease in spending, we should observed asymmetric effects on aggregate labor supply and, therefore, on output. We can show that the savings function for an individual agent is given by

\[
\frac{dk_{t+1}^i}{dG_t} = \Lambda_1(s_t^i; X_t)\frac{dw_t}{dG_t} + \Lambda_2(s_t^i; X_t)\left(k_t^i\frac{dr_t}{dG_t} - \frac{dT_t}{dG_t} \right) + \mathcal{F}(s_t^i; X_t)
\]

Not surprisingly, savings comove with \(\mathcal{F} \): in particular, increases in future taxes or decreases in future wages induce agents to increase their savings. Faced with a deficit-financed fiscal expansion, agents close to their borrowing constraint are induced to save more and, therefore, move away from the constraint. This movement increases the mass of unconstrained agents and, therefore, the aggregate labor supply elasticity. On the other hand, faced with a decrease in spending, the positive wealth effect induces agents to save less and potentially hit the constraint. This increase in the mass of constrained agents means that labor supply will be much less responsive and therefore output will decrease by less.

Balanced Budget Fiscal Policies

The intuition described above applies to the case of deficit financing, when current changes in \(G \) are financed with public debt and future taxes. Alternatively, the government could finance current changes in \(G \) with contemporaneous changes in \(T \), keeping \(B \) constant. This
can potentially attenuate the effect, as current tax increases induce a relatively larger labor supply response by constrained agents. Still, as long as the rise in spending (and taxes) is persistent, unconstrained agents still react to changes in current taxes (albeit by less) and additionally respond to future changes in taxes and wages.

7 Quantitative Results

In this section, we use the calibrated model as a laboratory to study the effects of changes in G of different signs and sizes. We study both permanent and temporary changes in G, as well as different financing regimes.

7.1 Permanent Fiscal Shocks

We start by considering the case of permanent increases (decreases) in G that are financed with temporary increases (decreases) in public debt, which are then paid for with permanent decreases (increases) in transfers, as these elicit the strongest (and more easily interpretable) effects.15 Figure 7 plots fiscal multipliers (on impact) as a function of the size of the change in G: the fiscal multiplier is monotonically increasing in G. It is lower for fiscal contractions than for fiscal expansions, and is larger (smaller) for larger fiscal expansions (contractions).15

Figures 8 and 9 help us understand the forces behind the mechanism. Figure 8 plots the percentage of constrained agents the period following the shock as a function of the size of the shock. As government spending increases, so does public debt, which crowds out capital. This permanent reduction in the capital stock lowers wages and thus the lifetime income for most agents in this economy. This reduction in lifetime income leads to a decrease in borrowing, which then leads to fewer agents being credit constrained. Conversely, a fall in spending leads to a reduction in public debt, which contributes to an increase in the capital stock and higher wages going forward. As lifetime income rises, agents borrow more and

15To be more specific, the experiment is the following: G rises permanently at $t = 1$, taxes and transfers remain unchanged for the first 20 periods and public debt absorbs all variation, transfers then adjust for 60 periods in order to bring public debt back to its original level, and the economy then converges to its new SRCE.
the share of credit constrained agents increases. These changes in the mass of constrained agents affect the fiscal multiplier, since the labor supply of constrained agents is less elastic. Figure 9 presents this relationship: the labor supply response of different types of agents as a function of the increase in G (left panel) or decrease in G (right panel). An increase in G reduces wages going forward; unconstrained agents react strongly to this fall in life-
time income, and their labor supply expands relatively more in the period of the shock. Constrained agents, on the other hand, do not respond to changes in future income, and their labor supply is only affected by current conditions, consequently responding less. Since more agents become unconstrained when G increases, the effective aggregate labor supply elasticity in the economy increases, leading to a larger output response to fiscal shocks. The same logic applies to fiscal contractions, represented in the right panel: in this case, there is an increase in lifetime income, which leads unconstrained agents to reduce their labor supply today. Constrained agents react only to current wages, and so their labor supply response is more muted. Since more agents become constrained in response to the fiscal contraction, this attenuates the effect of fiscal shocks on GDP: output falls but not by as much as it would expand for an expansion of the same size.

7.2 Temporary Fiscal Shocks

We now consider the more empirically plausible case of temporary fiscal shocks, and show that the same logic goes through. Additionally, we consider two types of financing regimes: (i) deficit financing, where the temporary shock is absorbed by changes in public debt until a certain point in time, after which transfers adjust to ensure that the economy returns to the

![Graph](image)

Figure 9: Government spending variation and relative labor supply response: this graph plots the labor supply response relative to the stationary steady state as a function of the initial level of assets for a permanent spending shock financed with deficits. The left panel corresponds to positive changes in G, while the right panel corresponds to negative changes in G.

34
initial (pre-shock) level of public debt, and (ii) balanced budget financing, in which transfers adjust to keep public debt constant during the entire transition.

Path of the Shocks

We follow most literature on fiscal policy and assume that fiscal spending follows an AR(1) process in logs:

\[
\log G_t = (1 - \rho_G) \log G_{SS} + \rho_G G_{t-1} + \varepsilon_t^G
\]

where \(\rho_G \) is assumed to be 0.9 at a quarterly frequency, consistent with the estimates of Nakamura and Steinsson (2014) for military procurement spending.

Deficit Financing

Figure 10 shows the multiplier as a function of the size of the shock for the case of deficit financing: the overall pattern of monotonicity is unchanged. The main differences are the magnitudes: since the shock is no longer permanent, it no longer causes a permanent decrease in wages, therefore leading to muted effects on lifetime income and resulting in smaller movements in aggregate labor supply on impact. The left panel plots the impact multipliers (measured the quarter after the shock), while the right panel plots the 1-year integral multipliers. The latter are necessarily smaller in magnitude, as the present discounted value of the fiscal shock becomes smaller as time passes, resulting in smaller movements of labor supply. The qualitative relationship between the multiplier and \(G \) is, however, preserved.

Figure 11 illustrates the mechanism behind the effect, by plotting the relative change in labor supply across the asset distribution. In the left side of the distribution, the change in labor supply is monotonically increasing (decreasing) both in the level of assets and in the size of the shock (the line starts at the constraint). Positive (negative) fiscal shocks lead to a decrease (increase) of agents at the constraint, which contributes to a greater (lower) elasticity of labor supply with respect to the fiscal shock. The change in the share of agents at the constraint is shown in Figure 12: the fiscal shock causes agents to move away from the constraint. Since the fiscal policy is financed with future taxes, and both the responses of
the wage and interest rates are backloaded, the labor supply of constrained agents responds much less than that of unconstrained ones.

Balanced Budget

Figure 13 plots the same measures of the fiscal multiplier for the case where the government runs a balanced budget and thus decreases (increases) transfers when G increases (decreases). The qualitative results are identical, but the sizes of the multipliers are much larger and the

Figure 10: Fiscal multiplier as a function of εG_t (the initial impulse), deficit financing. The left panel presents impact multipliers (one quarter after the shock), the right panel presents the 1-year integral multipliers.

Figure 11: (Relative) labor supply response to different changes in G over the asset distribution. Left panel plots the relative response to increases in G, right panel plots the relative response to decreases in G.

36
mechanism is different. This situation occurs because balanced budget interventions affect
the income of constrained agents contemporaneously, and these agents react very strongly to
changes in their current income. On top of the mechanism that we propose, there is a more
conventional one: when G increases, not only unconstrained agents but also constrained
react strongly due to changes in future wages — they both expand their labor supply due
to increases in current taxes/decreases in current transfers.

Figure 12: Percentage of agents at the borrowing constraint, deficit financing, one year after the shock, for different levels of
the shock to G.

Figure 13: Fiscal multiplier as a function of ϵ^G_t (the initial impulse), balanced budget financing. The left panel presents
impact multipliers (one quarter after the shock), the right panel presents the 1-year integral multipliers.
Since the fiscal shock is financed contemporaneously, constrained agents tend to react relatively more to positive changes in transfers than unconstrained ones, as shown by the labor supply responses in Figure 14. These labor supply responses behave in the manner that we would expect, with constrained agents greatly expanding their labor supply in response to a positive shock (decrease in transfers) and reducing their labor supply much more in response to a negative fiscal shock (increase in transfers). These labor supply responses can be combined with the movements in the distribution presented in Figure 15 to deliver our result: the figure shows that the mass of constrained agents is increasing in the size of the shock. Take a positive fiscal shock, to which constrained agents respond relatively more in expanding their labor supply. This positive shock is financed by a contemporaneous decrease in transfers, which brings to the constraint agents that were already close to the constraint. This increases the mass of constrained agents, who we know respond relatively more to the shock. The logic is the converse for negative fiscal shocks: by raising transfers, the government moves agents away from the constraint, to a part of the distribution where their labor supply response is relatively larger. Since the shock is negative, it results in a relatively smaller fiscal multiplier.

![Figure 14: (Relative) labor supply response to different changes in G over the asset distribution, balanced budget. Left panel plots the relative response to increases in G, right panel plots the relative response to decreases in G.](image-url)
8 Micro Evidence of the Mechanism

The mechanism we propose hinges on three key factors: (i) the labor supply response, (ii) the shift in the wealth distribution, and (iii) the financing regime of the fiscal shock. Intuitively, we propose that a tax-financed shock shifts the wealth distribution to the left. This, along with the fact that the labor supply response to a current income shock is decreasing in wealth, generates a fiscal multiplier that is increasing in the shock. A debt-financed shock, on the other hand, shifts the distribution to the right, which combined with a labor supply response to a future income shock that is increasing in wealth, leads again to a fiscal multiplier that is increasing in the size of the shock.

We use data from the Panel Study on Income Dynamics (PSID) to empirically support the micro mechanisms that we propose above. This dataset allow us to test the mechanism, as it combines data on wealth, income, and hours worked. Between 1989 and 1999, the PSID contains data on wealth every five years and after 1999 every two years. Data on income and hours worked is collected every survey year.

The first hypothesis we test is if the response of labor supply depends on wealth and if this relation is the same for future and current income shocks. Our model results depend
on the financing regime to the extent that tax-financed shocks are associated with current income effects, while debt-financed shocks are associated with future income shocks. We expect constrained agents to respond the most to current income shocks and the least to future income shocks.

We follow the income shock identification hypothesis of Domeij and Floden (2006), who in turn follow Altonji (1986), and use the 1-year lag of both the reported hourly wage rate \(w^{**} \) — only available for hourly rated workers — and its percentage change as instruments for the percentage variation in the implied hourly wage rate \(w^* \), measured as the household head’s total labor income and divided by total hours worked. We then interact the instrumented variable with standardized total wealth \(a \), defined as the net value of all assets, to see how the labor supply elasticity depends on wealth. To test the elasticity of hours worked to both current and future income shocks we estimate the following specifications:

\[
\Delta \ln h_{it} = \beta_1 \Delta \ln w^*_{it} + \alpha_i + \gamma_t + \epsilon_{it} \quad (22)
\]

\[
\Delta \ln h_{it} = \beta_1 \Delta \ln w^*_{it+2} + \alpha_i + \gamma_t + \epsilon_{it} \quad (23)
\]

where \(\Delta \ln h_{it} \) is the yearly change in the log total number of hours worked in year \(t \) by the head of household \(i \), \(\alpha_i \) are household fixed effects, and \(\gamma_t \) are year fixed effects. To show dependence on wealth, we split the sample according to different criteria based on household wealth. Results are reported in Tables 8 and 7, respectively. Columns (1) and (2) split the sample between households with negative and positive net assets, while columns (3)-
(6) corresponds to sample splits based on quartiles of the wealth distribution. Our results show that hours worked increase in response to both current and future income shocks, but the pattern of this increase is the opposite across the wealth distribution: low wealth households respond relatively more to current income shocks, while wealthier households respond relatively more to future income shocks.

\[\Delta \ln h_{it} = \beta_1 \Delta \ln w^*_t + \alpha_i + \gamma_t + \epsilon_{it} \]

\[\Delta \ln h_{it} = \beta_1 \Delta \ln w^*_t + \alpha_i + \gamma_t + \epsilon_{it} \]

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Total wealth<0</th>
<th>Total wealth>0</th>
<th>Total wealth< Wealth Q1</th>
<th>Total wealth< Wealth Q2</th>
<th>Total wealth> Wealth Q2</th>
<th>Total wealth> Wealth Q3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>1.728*</td>
<td>1.062**</td>
<td>1.441**</td>
<td>1.129***</td>
<td>0.784</td>
<td>1.995</td>
</tr>
<tr>
<td>(1.013)</td>
<td>(0.467)</td>
<td>(0.651)</td>
<td>(0.323)</td>
<td>(0.728)</td>
<td>(3.146)</td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>4,221</td>
<td>42,010</td>
<td>7,033</td>
<td>18,701</td>
<td>28,784</td>
<td>14,448</td>
</tr>
<tr>
<td>Number of ID</td>
<td>1,421</td>
<td>8,199</td>
<td>2,268</td>
<td>5,112</td>
<td>5,650</td>
<td>2,953</td>
</tr>
</tbody>
</table>

Table 8: Labor supply elasticity, total wealth and current income shocks

We now proceed to test whether the dependence of labor supply responses on wealth and the timing of income shocks depends at all on the implied financing regime for fiscal shocks. We identify fiscal shocks as in Section 2.1 (using quarterly data), and then sum these shocks over a two-year period, which coincides with the interval between wealth data collection in the PSID. Let \(G_t \equiv g_t + g_{t-1} \), the sum of these shocks. We then estimate the following equation:

\[\Delta \ln h_{it} = \beta_1 G_t + \beta_2 \Delta B_t + \beta_3 \Delta B_t \times G_t + \alpha_i + \epsilon_{it} \]

where \(\Delta B_t \) is the change in government debt as a percentage of GDP, which we take as a proxy for whether fiscal shocks are deficit- or tax-financed.

The results for this specification are in Table 9, and are consistent with the predictions.
The marginal effect of a fiscal shock is given by $\beta_1 + \beta_3 \times \Delta B_t$. A balanced-budget fiscal shock has a marginal effect equal to β_1: our model predicts that this effect should be positive, and larger for households at the bottom of the wealth distribution. Our model also predicts that deficit-financed fiscal shocks generate smaller multipliers than balanced-budget ones, an effect that is consistent with $\beta_3 < 0$. Since wealthier households respond relatively more to deficit-financed fiscal shocks, this coefficient should be increasing in the wealth quantile (decreasing in absolute value, since it is negative). As the results table shows, all these predictions are borne by the data and for different sample splits. In Appendix F, we show that these results are robust to pooling all households in a single regression, and interacting the fiscal shock and debt terms with household wealth levels.

9 Conclusion

In this paper, we contribute to the analysis of the aggregate effects of government spending shocks by providing empirical evidence that their macroeconomic effects depend both on the sign and size of these shocks. Using historical data for the US, we find that fiscal multipliers are increasing in the sign and size of the underlying fiscal shock. A different methodology and dataset corroborate this relationship in the context of fiscal consolidations in OECD countries.

After showing that a standard representative-agent DSGE model cannot replicate this
empirical pattern, we develop a life-cycle, overlapping generations model with heterogeneous agents and uninsurable idiosyncratic income risk. We show that such a model calibrated to the US can reproduce the empirical response of output to fiscal shocks of different signs and sizes. We show that the response of labor supply across the wealth distribution, along with the response of this very same distribution, are crucial to generating this pattern. This pattern is also robust to the financing regime: both tax-financed and deficit-financed fiscal shocks generate the same relationship between multipliers and underlying shocks, albeit via a different mechanism.

Finally, we empirically validate the proposed mechanism by combining micro data from the PSID with identified policy shocks, and showing that the positive response of labor supply is decreasing in wealth for tax-financed fiscal shocks, but increasing in wealth for deficit-financed fiscal shocks.

We see this paper as a first step to understanding how the size and sign of fiscal shocks can have different aggregate implications depending on the distributional features of the economy. In this paper, we focused essentially on the role of heterogeneous marginal propensities to work for the transmission of fiscal policies. In future research, and in the spirit of Kaplan et al. (2018), we intend to study in greater detail the effects of the empirical joint distribution between marginal propensities to work and consume for the sign and size dependence of fiscal policy shocks.

References

A Additional empirical evidence

A.1 US historical data

Figure 16: 1-year cumulative real output in the y-axis and 1-year cumulative real government spending in the x-axis, both as a percentage of trend GDP. The red line represents the quadratic fitted polynomial between the two variables. The correlation between output and the first-order term of government spending is 0.45 (p-value 0.00) and for the second-order term of government spending is 0.50 (p-value 0.00).

Figure 17: 2-year cumulative real output in the y-axis and 2-year cumulative real government spending in the x-axis, both as a percentage of trend GDP. The red line represents the quadratic fitted polynomial between the two variables. The correlation between output and the first-order term of government spending is 0.45 (p-value 0.00) and for the second-order term of government spending is 0.50 (p-value 0.00).
Figure 18: 1-year cumulative multiplier vs fiscal shock: On the y-axis we have the 1–year cumulative multiplier and on the x-axis we have the size of the fiscal shock. For negative shocks the correlation is 0.07 (p-value 0.29) while for positive shocks is 0.41 (p-value 0.00).

Figure 19: 2-year cumulative multiplier vs fiscal shock: On the y-axis we have the 2–year cumulative multiplier and on the x-axis we have the size of the fiscal shock. For negative shocks the correlation is 0.13 (p-value 0.04) while for positive shocks is 0.45 (p-value 0.00).
Figure 20: 3-year cumulative multiplier vs fiscal shock: On the y-axis we have the 3-year cumulative multiplier and on the x-axis we have the size of the fiscal shock. For negative shocks the correlation is 0.14 (p-value 0.03) while for positive shocks is 0.47 (p-value 0.00).

Table 10: Impact and cumulative multipliers for 1-, 2-, 3-, and 4-year horizons for positive and negative fiscal shocks in a specification without controlling for tax revenue.

<table>
<thead>
<tr>
<th></th>
<th>Linear</th>
<th>Negative shocks</th>
<th>Positive shocks</th>
<th>AR p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>0.22</td>
<td>0.17</td>
<td>0.35</td>
<td>AR = 0.38</td>
</tr>
<tr>
<td>1-year cumulative multiplier</td>
<td>0.28</td>
<td>0.17</td>
<td>0.41</td>
<td>AR = 0.25</td>
</tr>
<tr>
<td>2-year cumulative multiplier</td>
<td>0.45</td>
<td>0.11</td>
<td>0.57</td>
<td>AR = 0.13</td>
</tr>
<tr>
<td>3-year cumulative multiplier</td>
<td>0.54</td>
<td>0.16</td>
<td>0.65</td>
<td>AR = 0.11</td>
</tr>
<tr>
<td>4-year cumulative multiplier</td>
<td>0.56</td>
<td>0.23</td>
<td>0.67</td>
<td>AR = 0.12</td>
</tr>
</tbody>
</table>

Table 11: Impact and cumulative multipliers for 1-, 2-, 3-, and 4-year horizons for positive and negative fiscal shocks in a specification controlling for the government debt-to-GDP ratio.

<table>
<thead>
<tr>
<th></th>
<th>Linear</th>
<th>Negative shocks</th>
<th>Positive shocks</th>
<th>AR p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>0.21</td>
<td>0.01</td>
<td>0.39</td>
<td>AR = 0.36</td>
</tr>
<tr>
<td>1-year cumulative multiplier</td>
<td>0.28</td>
<td>0.02</td>
<td>0.49</td>
<td>AR = 0.27</td>
</tr>
<tr>
<td>2-year cumulative multiplier</td>
<td>0.47</td>
<td>-0.03</td>
<td>0.63</td>
<td>AR = 0.10</td>
</tr>
<tr>
<td>3-year cumulative multiplier</td>
<td>0.56</td>
<td>0.14</td>
<td>0.71</td>
<td>AR = 0.06</td>
</tr>
<tr>
<td>4-year cumulative multiplier</td>
<td>0.57</td>
<td>0.35</td>
<td>0.71</td>
<td>AR = 0.07</td>
</tr>
<tr>
<td>Linear</td>
<td>Negative shocks</td>
<td>Positive shocks</td>
<td>AR p-value</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td>Impact</td>
<td>0.32</td>
<td>-0.05</td>
<td>0.59</td>
<td>AR = 0.24</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.27)</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>1-year cumulative multiplier</td>
<td>0.35</td>
<td>-0.04</td>
<td>0.60</td>
<td>AR = 0.33</td>
</tr>
<tr>
<td></td>
<td>(0.11)</td>
<td>(0.28)</td>
<td>(0.11)</td>
<td></td>
</tr>
<tr>
<td>2-year cumulative multiplier</td>
<td>0.53</td>
<td>-0.07</td>
<td>0.64</td>
<td>AR = 0.31</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.38)</td>
<td>(0.09)</td>
<td></td>
</tr>
<tr>
<td>3-year cumulative multiplier</td>
<td>0.60</td>
<td>0.05</td>
<td>0.66</td>
<td>AR = 0.25</td>
</tr>
<tr>
<td></td>
<td>(0.09)</td>
<td>(0.37)</td>
<td>(0.07)</td>
<td></td>
</tr>
<tr>
<td>4-year cumulative multiplier</td>
<td>0.60</td>
<td>0.16</td>
<td>0.64</td>
<td>AR = 0.22</td>
</tr>
<tr>
<td></td>
<td>(0.10)</td>
<td>(0.35)</td>
<td>(0.08)</td>
<td></td>
</tr>
</tbody>
</table>

Table 12: Impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for positive and negative fiscal shocks, considering 8 lags for the control variables.

<table>
<thead>
<tr>
<th>Linear</th>
<th>Negative shocks</th>
<th>Positive shocks</th>
<th>AR p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>-0.07</td>
<td>-0.79</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.24)</td>
<td>(0.18)</td>
</tr>
<tr>
<td>1-year cumulative multiplier</td>
<td>-0.00</td>
<td>-0.78</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.45)</td>
<td>(0.28)</td>
</tr>
<tr>
<td>2-year cumulative multiplier</td>
<td>0.19</td>
<td>-0.72</td>
<td>0.77</td>
</tr>
<tr>
<td></td>
<td>(0.15)</td>
<td>(0.51)</td>
<td>(0.36)</td>
</tr>
<tr>
<td>3-year cumulative multiplier</td>
<td>0.22</td>
<td>-0.64</td>
<td>1.03</td>
</tr>
<tr>
<td></td>
<td>(0.20)</td>
<td>(0.56)</td>
<td>(0.39)</td>
</tr>
<tr>
<td>4-year cumulative multiplier</td>
<td>0.06</td>
<td>-1.08</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.58)</td>
<td>(0.42)</td>
</tr>
</tbody>
</table>

Table 13: Impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for positive and negative fiscal shocks, omitting the World War II period.

<table>
<thead>
<tr>
<th>Linear</th>
<th>Negative shocks</th>
<th>Positive shocks</th>
<th>AR p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>0.60</td>
<td>0.41</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
<td>(0.36)</td>
<td>(0.40)</td>
</tr>
<tr>
<td>1-year cumulative multiplier</td>
<td>0.33</td>
<td>-0.06</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>(0.31)</td>
<td>(0.52)</td>
<td>(0.39)</td>
</tr>
<tr>
<td>2-year cumulative multiplier</td>
<td>0.34</td>
<td>-0.48</td>
<td>0.65</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.70)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>3-year cumulative multiplier</td>
<td>0.55</td>
<td>-0.86</td>
<td>0.86</td>
</tr>
<tr>
<td></td>
<td>(0.24)</td>
<td>(0.96)</td>
<td>(0.34)</td>
</tr>
<tr>
<td>4-year cumulative multiplier</td>
<td>0.59</td>
<td>-0.98</td>
<td>0.96</td>
</tr>
<tr>
<td></td>
<td>(0.27)</td>
<td>(1.24)</td>
<td>(0.37)</td>
</tr>
</tbody>
</table>

Table 14: Impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for positive and negative fiscal shocks, considering only the post-1948 period.
<table>
<thead>
<tr>
<th>Impact</th>
<th>Linear</th>
<th>Negative shocks</th>
<th>Positive shocks</th>
<th>AR p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>0.90</td>
<td>0.75</td>
<td>1.32</td>
<td>AR = 0.66</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.31)</td>
<td>(0.46)</td>
<td></td>
</tr>
<tr>
<td>1–year cumulative multiplier</td>
<td>0.82</td>
<td>0.70</td>
<td>1.01</td>
<td>AR = 0.52</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.29)</td>
<td>(0.71)</td>
<td></td>
</tr>
<tr>
<td>2–year cumulative multiplier</td>
<td>0.76</td>
<td>0.30</td>
<td>0.94</td>
<td>AR = 0.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.24)</td>
<td>(0.65)</td>
<td></td>
</tr>
<tr>
<td>3–year cumulative multiplier</td>
<td>0.78</td>
<td>-0.06</td>
<td>1.15</td>
<td>AR = 0.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.29)</td>
<td>(0.64)</td>
<td></td>
</tr>
<tr>
<td>4–year cumulative multiplier</td>
<td>0.79</td>
<td>1.28</td>
<td>-0.28</td>
<td>AR = 0.59</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.31)</td>
<td>(0.64)</td>
<td></td>
</tr>
</tbody>
</table>

Table 15: Impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for positive and negative fiscal shocks, considering only the post-1954 period.

<table>
<thead>
<tr>
<th>Linear</th>
<th>Quadratic term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>0.13</td>
</tr>
<tr>
<td></td>
<td>(0.16)</td>
</tr>
<tr>
<td>1 year</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(0.19)</td>
</tr>
<tr>
<td>2 years</td>
<td>0.14</td>
</tr>
<tr>
<td></td>
<td>(0.29)</td>
</tr>
<tr>
<td>3 years</td>
<td>-0.29</td>
</tr>
<tr>
<td></td>
<td>(0.50)</td>
</tr>
<tr>
<td>4 years</td>
<td>-0.91</td>
</tr>
<tr>
<td></td>
<td>(0.72)</td>
</tr>
</tbody>
</table>

Table 16: Linear and quadratic term for 1-, 2-, 3-, and 4- year horizons for fiscal shocks.

<table>
<thead>
<tr>
<th>Average - st.dev.</th>
<th>Average</th>
<th>Average + st.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>0.14</td>
<td>0.17</td>
</tr>
<tr>
<td>1 year cum. mult.</td>
<td>0.18</td>
<td>0.21</td>
</tr>
<tr>
<td>2 year cum. mult.</td>
<td>0.23</td>
<td>0.32</td>
</tr>
<tr>
<td>3 year cum. mult.</td>
<td>-0.05</td>
<td>0.20</td>
</tr>
<tr>
<td>4 year cum. mult.</td>
<td>-0.46</td>
<td>-0.02</td>
</tr>
</tbody>
</table>

Table 17: Impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for average G, one–standard-deviation above and below, for the specification with a quadratic term.
<table>
<thead>
<tr>
<th></th>
<th>Linear</th>
<th>Below threshold</th>
<th>Above threshold</th>
<th>AR p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact multiplier</td>
<td>0.20</td>
<td>0.22</td>
<td>0.25</td>
<td>AR = 0.17</td>
</tr>
<tr>
<td>(0.17)</td>
<td>(0.17)</td>
<td>(0.63)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–year cumulative multiplier</td>
<td>0.27</td>
<td>0.27</td>
<td>0.39</td>
<td>AR = 0.18</td>
</tr>
<tr>
<td>(0.14)</td>
<td>(0.14)</td>
<td>(0.60)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–year cumulative multiplier</td>
<td>0.45</td>
<td>0.45</td>
<td>0.56</td>
<td>AR = 0.18</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(0.11)</td>
<td>(0.29)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–year cumulative multiplier</td>
<td>0.56</td>
<td>0.55</td>
<td>0.61</td>
<td>AR = 0.15</td>
</tr>
<tr>
<td>(0.09)</td>
<td>(0.10)</td>
<td>(0.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–year cumulative multiplier</td>
<td>0.59</td>
<td>0.56</td>
<td>0.61</td>
<td>AR = 0.17</td>
</tr>
<tr>
<td>(0.08)</td>
<td>(0.11)</td>
<td>(0.11)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 18: Impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for fiscal shocks above and below the median negative shock.

<table>
<thead>
<tr>
<th></th>
<th>Linear</th>
<th>Below threshold</th>
<th>Above threshold</th>
<th>AR p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact multiplier</td>
<td>0.20</td>
<td>0.19</td>
<td>0.48</td>
<td>0.39</td>
</tr>
<tr>
<td>(0.17)</td>
<td>(0.27)</td>
<td>(0.14)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–year cumulative multiplier</td>
<td>0.27</td>
<td>0.16</td>
<td>0.51</td>
<td>0.26</td>
</tr>
<tr>
<td>(0.14)</td>
<td>(0.25)</td>
<td>(0.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2–year cumulative multiplier</td>
<td>0.45</td>
<td>0.17</td>
<td>0.58</td>
<td>0.17</td>
</tr>
<tr>
<td>(0.10)</td>
<td>(0.31)</td>
<td>(0.07)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3–year cumulative multiplier</td>
<td>0.56</td>
<td>0.19</td>
<td>0.66</td>
<td>0.12</td>
</tr>
<tr>
<td>(0.09)</td>
<td>(0.32)</td>
<td>(0.06)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4–year cumulative multiplier</td>
<td>0.58</td>
<td>0.29</td>
<td>0.68</td>
<td>0.13</td>
</tr>
<tr>
<td>(0.09)</td>
<td>(0.28)</td>
<td>(0.06)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 19: Impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for fiscal shocks above and below the median positive shock.

<table>
<thead>
<tr>
<th></th>
<th>Average negative - st.dev.</th>
<th>Average negative</th>
<th>Average positive</th>
<th>Average positive + st.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact mult.</td>
<td>-0.25</td>
<td>-0.07</td>
<td>0.36</td>
<td>0.56</td>
</tr>
<tr>
<td>1 year cum. mult.</td>
<td>-0.99</td>
<td>-0.58</td>
<td>-0.37</td>
<td>0.06</td>
</tr>
<tr>
<td>2 year cum. mult.</td>
<td>-2.31</td>
<td>-1.35</td>
<td>-1.50</td>
<td>-0.16</td>
</tr>
<tr>
<td>3 year cum. mult.</td>
<td>-4.02</td>
<td>-2.31</td>
<td>-2.63</td>
<td>-0.23</td>
</tr>
<tr>
<td>4 year cum. mult.</td>
<td>-6.12</td>
<td>-3.41</td>
<td>-4.22</td>
<td>-1.54</td>
</tr>
</tbody>
</table>

Table 20: Consumption impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for positive and negative fiscal shocks.

<table>
<thead>
<tr>
<th></th>
<th>Average - st.dev.</th>
<th>Average</th>
<th>Average + st.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact</td>
<td>0.06</td>
<td>0.25</td>
<td>0.43</td>
</tr>
<tr>
<td>1 year cum. mult.</td>
<td>-0.39</td>
<td>-0.06</td>
<td>0.27</td>
</tr>
<tr>
<td>2 year cum. mult.</td>
<td>-1.18</td>
<td>-0.35</td>
<td>0.48</td>
</tr>
<tr>
<td>3 year cum. mult.</td>
<td>-1.90</td>
<td>-0.54</td>
<td>0.83</td>
</tr>
<tr>
<td>4 year cum. mult.</td>
<td>-2.85</td>
<td>-0.87</td>
<td>1.12</td>
</tr>
</tbody>
</table>

Table 21: Consumption impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for average G, one-standard-deviation above and below, for the specification with a quadratic term.
Table 22: Investment impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for positive and negative fiscal shocks.

<table>
<thead>
<tr>
<th>Impact mult.</th>
<th>Average negative - st.dev.</th>
<th>Average negative</th>
<th>Average positive</th>
<th>Average positive + st.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-2.09</td>
<td>-1.38</td>
<td>-0.13</td>
<td>-0.20</td>
</tr>
<tr>
<td>1 year cum. mult.</td>
<td>-3.89</td>
<td>-2.53</td>
<td>0.49</td>
<td>-0.15</td>
</tr>
<tr>
<td>2 year cum. mult.</td>
<td>-6.26</td>
<td>-4.03</td>
<td>-0.34</td>
<td>-0.37</td>
</tr>
<tr>
<td>3 year cum. mult.</td>
<td>-11.09</td>
<td>-6.96</td>
<td>-1.80</td>
<td>-0.44</td>
</tr>
<tr>
<td>4 year cum. mult.</td>
<td>-16.73</td>
<td>-10.01</td>
<td>-3.94</td>
<td>-0.79</td>
</tr>
</tbody>
</table>

Table 23: Investment impact and cumulative multipliers for 1-, 2-, 3-, and 4- year horizons for average G, one-standard-deviation above and below, for the specification with a quadratic term.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Average - st.dev.</th>
<th>Average</th>
<th>Average + st.dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-0.82</td>
<td>-0.61</td>
<td>-0.39</td>
</tr>
<tr>
<td>1 year cum. mult.</td>
<td>-0.73</td>
<td>-0.59</td>
<td>-0.44</td>
</tr>
<tr>
<td>2 year cum. mult.</td>
<td>-1.06</td>
<td>-0.65</td>
<td>-0.25</td>
</tr>
<tr>
<td>3 year cum. mult.</td>
<td>-2.35</td>
<td>-1.01</td>
<td>0.33</td>
</tr>
<tr>
<td>4 year cum. mult.</td>
<td>-4.79</td>
<td>-1.90</td>
<td>0.99</td>
</tr>
</tbody>
</table>

Figure 21: Average impact multiplier on the y-axis and shock threshold as a percentage of GDP on the x-axis. The red line represents the average fiscal multiplier for shocks above the threshold, and the blue line the average fiscal multiplier for shocks below the threshold. Results from specification (3) for different pooling of the sample. Confidence intervals at the 70% level.
Figure 22: Average 1-year cumulative multiplier on the y-axis and shock threshold as a percentage of GDP on the x-axis. The red line represents the average fiscal multiplier for shocks above the threshold and the blue line the average fiscal multiplier for shocks below the threshold. Results from specification (3) for different pooling of the sample. Confidence intervals at the 70% level.

B Details on Representative agent Models

B.1 Real Business Cycle Model

Set-up and Equilibrium

The set-up follows closely that of Cooley and Prescott (1995). A representative household solves

$$\max_{\{C_t, N_t, K_t\}_{t=0}^\infty} \mathbb{E}_0 \sum_{t=0}^\infty \beta^t \left\{ \frac{C_t^{1-\gamma}}{1-\gamma} - \frac{\chi N_t^{1+\nu}}{1+\nu} \right\}$$

s.t.

$$C_t + K_t + B_t = (1-\tau)w_tN_t + (1+r_t^k)K_{t-1} + R_tB_{t-1} - T_t$$

where C_t is consumption, N_t are hours worked, K_t is capital, w_t is the real wage, r_t^k is the rate of return on capital, B_t are holdings of public debt, R_t is the return on public debt, and T_t is a lump sum tax/transfer from the government. The optimality conditions for the
household are standard:

\[
1 = E_t \beta \left(\frac{C_t}{C_{t+1}} \right)^{\sigma} (1 + r_{t+1}^k)
\]

\[
1 = E_t \beta \left(\frac{C_t}{C_{t+1}} \right)^{\sigma} R_{t+1}
\]

\[
\chi C_t^{\sigma} N_t^{\nu} = w_t(1 - \tau)
\]

The representative firm hires capital and labor in spot markets,

\[
\max_{K_{t-1}, N_t} z_t K_{t-1}^{\alpha} N_t^{1-\alpha} - w_t N_t - (r_t^k + \delta) K_{t-1}
\]

This yields the standard factor choice first-order conditions:

\[
w_t = (1 - \alpha) z_t \left(\frac{K_{t-1}}{N_t} \right)^{\alpha}
\]

\[
r_t^k + \delta = \alpha z_t \left(\frac{N_t}{K_{t-1}} \right)^{1-\alpha}
\]

Finally, the government’s budget constraint is

\[
G_t + R_t B_{t-1} = B_t + \tau w_t N_t + T_t
\]

Due to Ricardian equivalence, the specific fiscal rule is irrelevant for the value of the fiscal multiplier. The aggregate resource constraint is

\[
C_t + K_t + G_t = z_t K_{t-1}^{\alpha} N_t^{1-\alpha} + (1 - \delta) K_{t-1}
\]
Calibration

We try to map the calibration of our baseline neoclassical heterogeneous agents model to the representative agent specification as closely as possible. The discount factor is chosen to yield an equilibrium real rate of 1.1% quarterly, $\beta = 0.9891$. Disutility of labor is $\chi = 8.1$, the coefficient of relative risk aversion is $\sigma = 1.2$, the Frisch elasticity of labor supply is $\nu = 1$, the depreciation rate is $\delta = 0.015$, and the capital share is $\alpha = 1/3$. G_{SS} and B_{SS} are chosen to be 20% and 43% of GDP at steady state, respectively.

B.2 New Keynesian model

We extend the basic RBC model with investment with the standard New Keynesian ingredients. We assume that production is now done by two sectors: a perfectly competitive final goods sector that produces final goods by aggregating a continuum of intermediate varieties in Dixit-Stiglitz fashion. These firms solve a problem of the type

$$\max_{Y_t(i)} P_t \left[\int_0^1 Y_t(i) \frac{\varepsilon - 1}{\varepsilon} di \right]^{\frac{\varepsilon - 1}{\varepsilon}} - \int_0^1 P_t(i) Y_t(i) di$$

This solution generates a demand curve for each variety:

$$Y_t(i) = \left[\frac{P_t(i)}{P_t} \right]^{-\varepsilon} Y_t$$

where ε is the elasticity of substitution across varieties. Intermediate goods producers are monopolistic competitors and hire labor and capital in spot markets. Let $P_t(i)$ denote the price of intermediate variety sold by firm i. These firms face quadratic costs of adjusting their prices à la Rotemberg. The adjustment costs of price setting for firm i are given by

$$\Xi_t(i) = \frac{\varepsilon}{2} Y_t \left[\frac{P_t(i)}{P_{t-1}(i)} \frac{1}{\Pi} - 1 \right]^2$$

For simplicity, we assume that these costs scale with total output and it is free to adjust prices to keep track with trend inflation Π.

57
The firm’s value in nominal terms is

\[P_t V_t[P_{t-1}(i); X_t] = \max_{P_t(i), Y_t(i), K_t(i), L_t(i)} P_t(i) Y_t(i) - P_t w_t L_t(i) - P_t (r_t + \delta) K_t(i) - P_t \Xi_t(i) \]

\[+ \mathbb{E}_t \frac{\Lambda_{t,t+1}}{\Pi_{t+1}} P_{t+1} V_{t+1}[P_t(i); X_{t+1}] \]

subject to the demand curve for variety \(i \) and the production function:

\[Y_t(i) = \left[\frac{P_t(i)}{P_t} \right]^{-\varepsilon} Y_t \]

\[Y_t(i) = A_t K_t(i)^\alpha L_t(i)^{1-\alpha} \]

where \(\frac{\Lambda_{t,t+1}}{\Pi_{t+1}} \) is the relevant stochastic discount factor for discounting the firm’s payoffs, adjusted for inflation. The firm’s problem can be split into a static cost-minimization component and a dynamic price-setting one. The static problem yields the standard condition for cost minimization:

\[\frac{w_t}{r_t + \delta} = \frac{1 - \alpha}{\alpha} \frac{K_t(i)}{L_t(i)} \]

(25)

Combining this condition with the production function allows us to express total costs as a function of output and factor prices only:

\[TC_t(i) = w_t L_t(i) + (r_t + \delta) K_t(i) \]

\[= w_t \frac{Y_t(i)}{A_t \left[\frac{w_t}{r_t + \delta + 1 - \alpha} \right]^{\alpha}} + (r_t + \delta) w_t \frac{\alpha}{\alpha} \frac{Y_t(i)}{A_t \left[\frac{w_t}{r_t + \delta + 1 - \alpha} \right]^{\alpha}} \]

\[= \left(\frac{w_t}{1 - \alpha} \right)^{1-\alpha} \left(\frac{r_t + \delta}{\alpha} \right)^{\alpha} \frac{Y_t(i)}{A_t} \]

This expression is now useful to solve the firm’s dynamic problem, just in terms of price and output choices:

\[V_t[P_{t-1}(i); X_t] = \max_{P_t(i), Y_t(i)} \frac{P_t(i)}{P_t} Y_t(i) - TC_t(i) - \Xi_t(i) + \mathbb{E}_t \Lambda_{t,t+1} V_{t+1}[P_t(i); X_{t+1}] \]
subject to the demand function $Y_t(i) = \left[\frac{P_t(i)}{P_t} \right]^{-\varepsilon} Y_t$. We can furthermore replace $Y_t(i)$ for the demand function and solve for $P_t(i)$ only. The first-order condition is then

$$- (\varepsilon - 1) P_t(i)^{-\varepsilon} P_t^{1-\varepsilon} Y_t + \varepsilon MC_t P_t(i)^{-\varepsilon - 1} P_t Y_t - \xi Y_t \left[\frac{P_t(i)}{P_t-1(i)} - 1 \right] \frac{1}{P_t-1(i)} \Pi$$

where marginal costs are

$$MC_t \equiv \frac{\partial TC_t(i)}{\partial Y_t(i)} = \left(\frac{w_t}{1 - \alpha} \right)^{1-\alpha} \left(\frac{r_t + \delta}{\alpha} \right)^{\alpha} \frac{1}{A_t}$$

We now invoke the symmetric equilibrium assumption to obtain the New Keynesian Phillips curve:

$$[(\varepsilon - 1) - \varepsilon MC_t] + \xi \left[\frac{\Pi_t}{\Pi} - 1 \right] \frac{\Pi_t}{\Pi} = E_t \Lambda_{t,t+1} \xi Y_{t+1} \left[\frac{\Pi_{t+1}}{\Pi} - 1 \right] \frac{\Pi_{t+1}}{\Pi}$$

The central bank sets the nominal interest using a Taylor rule:

$$R_t = R \left(\frac{\Pi_t}{\Pi} \right)^{\phi_{\Pi}} \left(\frac{Y_t}{Y} \right)^{\phi_{Y}}$$

where R is some target rate and (Π, Y) are output and inflation benchmarks. The real interest rate is determined via the Fisher Equation:

$$1 + r_t = \frac{R_t}{\Pi_t}$$

We assume that government debt pays a real return and that all intermediate firm profits are rebated to the representative household.

Calibration

We calibrate all common parameters to the same values as in the RBC model. For the New Keynesian parameters, we use standard values: menu costs are set so that firms change their
prices once every three quarters, \(\eta = 58.10 \), the elasticity of substitution across varieties is \(\varepsilon = 6 \), and the Taylor rule parameters are \(\rho_R = 0.80 \), \(\phi_\Pi = 1.50 \), \(\phi_Y = 0.5 \).

B.3 Investment Adjustment Costs

We introduce quadratic adjustment costs of investment of the type

\[\Phi \frac{1}{2} K_{t-1} \left(\frac{I_t}{K_{t-1}} - \delta \right)^2 \]

This changes the first-order condition for \(K_t \) for the representative household:

\[1 + \Phi \left(\frac{K_t}{K_{t-1}} \right) = \beta E_t \left(\frac{C_t}{C_{t+1}} \right)^\sigma \left\{ 1 + r_{t+1}^k + \frac{\Phi}{2} \left(\frac{K_{t+1}}{K_t} \right)^2 - 1 \right\} \]

Calibration

We choose a standard quarterly value of \(\Phi = 12.5 \).

B.4 Infinite Capital Adjustment Costs

Figure 23 shows that in the extreme case of infinite adjustment costs, so that capital is fixed throughout the experiment, the level of the multiplier can be raised to match the data, but this is still not enough to generate any meaningful nonlinearities.
Figure 23: Representative agent, New Keynesian model with infinite adjustment costs of investment: fiscal multipliers as a function of the size of the variation in G, at different horizons. The blue line corresponds to G contractions, while the red line represents G expansions.
C Derivations for Section 6

The solution to the household problem is standard, where λ_t^i is the Lagrange multiplier on the borrowing constraint

$$ (c_t^i)^{\sigma} (n_t^i)^{\eta} = u_t^i \tilde{w} $$

$$ (c_t^i)^{-\sigma} = \beta \mathbb{E}_t (1 + r_{t+1}) c_{t+1}^i)^{-\sigma} + \lambda_t^i $$

$$ c_t^i + k_{t+1}^i = k_t^i (1 + r_t) + w_t^i n_t^i - T_t $$

$$ k_{t+1}^i \geq -b \perp \lambda_t^i \geq 0 $$

Combining the labor supply first-order condition with the budget constraint allows us to derive the response of labor supply to a change in G_t:

$$ \frac{dn_t^i}{dG_t} = \alpha_1(s_t^i; X_t) \frac{dw_t}{dG_t} + \alpha_2(s_t^i; X_t) \left[(1 - 1_t^i) \frac{dk_{t+1}^i}{dG_t} + \frac{dT_t}{dG_t} - k_t^i \frac{dr_t}{dG_t} \right] $$

(26)

where

$$ \alpha_1(s_t^i; X_t) = \frac{n_t^i}{\eta w_t^i} \left(1 - \sigma \frac{w_t^i n_t^i u_t^i}{c_t^i} \right) $$

$$ \alpha_2(s_t^i; X_t) = \frac{n_t^i}{\eta w_t^i} \sigma \frac{w_t^i}{c_t^i} $$

For constrained agents $\frac{dk_{t+1}^i}{dG_t} = 0$, but not for unconstrained ones. To determine the response of the savings policy to changes in G_t, we can combine the Euler equation with the budget constraint:

$$ \frac{dk_{t+1}^i}{dG_t} = \Lambda_1(s_t^i; X_t) \frac{dw_t}{dG_t} + \Lambda_2(s_t^i; X_t) \left(k_t^i \frac{dr_t}{dG_t} - \frac{dT_t}{dG_t} \right) $$

$$ -\mathbb{E}_t \Lambda_3(s_t^i; X_t) \frac{dw_{t+1}}{dG_t} + \mathbb{E}_t \Lambda_4(s_t^i; X_t) \frac{dr_{t+1}}{dG_t} + \mathbb{E}_t \Lambda_5(s_t^i; X_t) \left(\frac{dT_{t+1}}{dG_t} + \frac{dk_{t+2}^i}{dG_t} \right) $$

62
The comparative statics are immediate from signing

\[
\kappa(s^i_t; X_t) = \left[1 - \alpha_2(s^i_t; X_t)w_t w_t \right] + \mathbb{E}_t \beta \left(\frac{c^i_t}{c^i_{t+1}} \right)^\sigma \left(1 + r_{t+1} \right)^2 \left(1 - \alpha_2(s^i_{t+1}; X_{t+1})u^i_{t+1}w_{t+1} \right)
\]

\[
\Lambda_1(s^i_t; X_t) = \kappa(s^i_t; X_t)^{-1} u_t^i \left(\alpha_1(s^i_t; X_t) w_t + n_t^i \right)
\]

\[
\Lambda_2(s^i_t; X_t) = \kappa(s^i_t; X_t)^{-1} \left[1 - \alpha_2(s^i_t; X_t)u_t^i w_t \right]
\]

\[
\Lambda_3(s^i_t; X_t) = \kappa(s^i_t; X_t)^{-1} \beta \left(\frac{c^i_t}{c^i_{t+1}} \right)^\sigma \left(1 + r_{t+1} \right) u^i_{t+1} \left(\alpha_1(s^i_{t+1}; X_{t+1}) w_{t+1} + n_{t+1}^i \right)
\]

\[
\Lambda_4(s^i_t; X_t) = \kappa(s^i_t; X_t)^{-1} \beta \left(\frac{c^i_t}{c^i_{t+1}} \right)^\sigma \left[\frac{1}{\sigma} - (1 + r_{t+1}) \frac{1 - \alpha_2(s^i_{t+1}; X_{t+1})u^i_{t+1} w_{t+1}}{c^i_{t+1}} \right]
\]

\[
\Lambda_5(s^i_t; X_t) = \kappa(s^i_t; X_t)^{-1} \beta \left(\frac{c^i_t}{c^i_{t+1}} \right)^\sigma \left(1 + r_{t+1} \right) \frac{1 - \alpha_2(s^i_{t+1}; X_{t+1})u^i_{t+1} w_{t+1}}{c^i_{t+1}}
\]

We can rewrite this expression as

\[
\frac{dk^i_{t+1}}{dG_t} = \Lambda_1(s^i_t; X_t) \frac{dw_t}{dG_t} + \Lambda_2(s^i_t; X_t) \left(k^i_t \frac{dr_t}{dG_t} - \frac{dT_t}{dG_t} \right) + F(s^i_t; X_t)
\] \hspace{1cm} (27)

where \(F(s^i_t; X_t) \) takes into account all changes in future factor prices and taxes. Combining 26 with 27 yields the expression in Proposition 2.1:

\[
\frac{dn^i_t}{dG_t} = \left[\alpha_1(s^i_t) + \alpha_2(s^i_t) \Lambda_1(s^i_t) (1 - 1^i_t) \right] \frac{dw_t}{dG_t}
\]

\[
+ \alpha_2(s^i_t) [1 - (1 - 1^i_t) \Lambda_2(s^i_t)] \left(\frac{dT_t}{dG_t} - k^i_t \frac{dr_t}{dG_t} \right)
\]

\[
+ \alpha_2(s^i_t) (1 - 1^i_t) F(s^i_t; X_t)
\]

The comparative statics are immediate from signing \(\alpha_1, \alpha_2, \Lambda_1, \Lambda_2 \).
We can write $F(s^i_t; X_t)$ recursively as

$$F(s^i_t; X_t) = -\Lambda_3(s^i_t; X_t)[1 - \Lambda_2(s^i_{t+1}; X_{t+1})] \frac{dw_{t+1}}{dG_t}$$

$$+ [\Lambda_4(s^i_t; X_t) + \Lambda_5(s^i_t; X_t)\Lambda_2(s^i_{t+1}; X_{t+1})k^i_{t+1}] \frac{dr_{t+1}}{dG_t}$$

$$+ \Lambda_5(s^i_t; X_t)[1 - \Lambda_2(s^i_{t+1}; X_{t+1})] \frac{dT_{t+1}}{dG_t}$$

$$+ \Lambda_5(s^i_t; X_t)F(s^i_{t+1}; X_{t+1})$$

It is possible to show that

$$k^i_{t+1} < 0 \Rightarrow [\Lambda_4(s^i_t; X_t) + \Lambda_5(s^i_t; X_t)\Lambda_2(s^i_{t+1}; X_{t+1})k^i_{t+1}] > 0$$

in which case we can show that $F(s^i_t; X_t) \geq 0$ for

$$\frac{dr_{t+j}}{dG_t} \geq 0, \frac{dw_{t+j}}{dG_t} \leq 0, \text{and} \frac{dT_{t+j}}{dG_t} \geq 0, \forall j \geq 0$$
D Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preferences</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>η</td>
<td>1</td>
<td>Inverse Frisch elasticity</td>
<td>Trabandt and Uhlig (2011)</td>
</tr>
<tr>
<td>σ</td>
<td>1.2</td>
<td>Risk aversion parameter</td>
<td>Literature</td>
</tr>
<tr>
<td>Technology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>α</td>
<td>0.33</td>
<td>Capital share of output</td>
<td>Literature</td>
</tr>
<tr>
<td>δ</td>
<td>0.015</td>
<td>Capital depreciation rate</td>
<td>Literature</td>
</tr>
<tr>
<td>ρ</td>
<td>0.761</td>
<td>(u' = \rho u + \epsilon, \quad \epsilon \sim N(0, \sigma^2))</td>
<td>PSID 1968-1997</td>
</tr>
<tr>
<td>(\sigma_\epsilon)</td>
<td>0.211</td>
<td>Variance of risk</td>
<td>PSID 1968-1997</td>
</tr>
<tr>
<td>Taxes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\theta_0)</td>
<td>0.788</td>
<td>Income tax level</td>
<td></td>
</tr>
<tr>
<td>(\theta_1)</td>
<td>0.137</td>
<td>Income tax progressivity</td>
<td>OECD</td>
</tr>
<tr>
<td>(\tau_c)</td>
<td>0.047</td>
<td>Consumption tax</td>
<td>Trabandt and Uhlig (2011)</td>
</tr>
<tr>
<td>(\tau_k)</td>
<td>0.364</td>
<td>Capital tax</td>
<td>Trabandt and Uhlig (2011)</td>
</tr>
<tr>
<td>(\tilde{\tau}_s)</td>
<td>0.077</td>
<td>Social security tax: employer</td>
<td>OECD 2001-2007</td>
</tr>
<tr>
<td>(\tau_s)</td>
<td>0.077</td>
<td>Social security tax: employee</td>
<td>OECD 2001-2007</td>
</tr>
<tr>
<td>Income profile parameters</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\gamma_1)</td>
<td>0.265</td>
<td>Wage profile</td>
<td>LIS survey</td>
</tr>
<tr>
<td>(\gamma_2)</td>
<td>-0.005</td>
<td>Wage profile</td>
<td>LIS survey</td>
</tr>
<tr>
<td>(\gamma_3)</td>
<td>3.6E-05</td>
<td>Wage profile</td>
<td>LIS survey</td>
</tr>
<tr>
<td>Macro ratios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B/Y</td>
<td>1.714</td>
<td>Debt-to-GDP ratio</td>
<td>US Data</td>
</tr>
<tr>
<td>G/Y</td>
<td>0.15</td>
<td>Government spending-to-GDP ratio</td>
<td>US Data</td>
</tr>
<tr>
<td>g/Y</td>
<td>0.07</td>
<td>Transfers-to-GDP ratio</td>
<td>Hagedorn et al. (2016)</td>
</tr>
</tbody>
</table>
E Distribution

Permanent Shock: Deficit Financing

![Graph showing distribution response after 1 year - Increase in G and Decrease in G for different percentages.]

Figure 24: Changes in the distribution in response to a permanent change in G.

Temporary Shock: Deficit Financing

![Graph showing distribution response after 1 year - Increase in G and Decrease in G for different percentages.]

Figure 25: Changes in the distribution in response to a permanent change in G.

Temporary Shock: Balanced Budget
Figure 26: Changes in the distribution in response to a permanent change in G.

F Robustness: Micro Evidence of the Mechanism

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β₁</td>
<td>3.770*</td>
<td>5.081***</td>
<td>5.046*</td>
<td>3.196***</td>
<td>4.418**</td>
<td>4.815*</td>
</tr>
<tr>
<td></td>
<td>(2.288)</td>
<td>(1.794)</td>
<td>(2.702)</td>
<td>(0.757)</td>
<td>(2.016)</td>
<td>(2.910)</td>
</tr>
<tr>
<td>Observations</td>
<td>4,006</td>
<td>38,600</td>
<td>30,148</td>
<td>13,806</td>
<td>29,793</td>
<td>25,104</td>
</tr>
<tr>
<td>Number of ID</td>
<td>1,386</td>
<td>7,851</td>
<td>6,132</td>
<td>4,041</td>
<td>6,169</td>
<td>5,260</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 24: Labor supply elasticity, total wealth and future income shocks

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>β₁</td>
<td>1.728*</td>
<td>1.062**</td>
<td>0.620</td>
<td>1.909***</td>
<td>0.662</td>
<td>0.960</td>
</tr>
<tr>
<td></td>
<td>(1.013)</td>
<td>(0.467)</td>
<td>(0.403)</td>
<td>(0.637)</td>
<td>(0.441)</td>
<td>(0.739)</td>
</tr>
<tr>
<td>Observations</td>
<td>4,221</td>
<td>42,010</td>
<td>33,753</td>
<td>14,118</td>
<td>33,131</td>
<td>28,199</td>
</tr>
<tr>
<td>Number of ID</td>
<td>1,421</td>
<td>8,199</td>
<td>6,580</td>
<td>4,014</td>
<td>6,572</td>
<td>5,665</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

Table 25: Labor supply elasticity, total wealth and current income shocks
\[
\ln h_{it} = \beta_1 \Delta \ln w_{it}^* + \beta_2 a_{it} + \beta_3 a_{it} \Delta \ln w_{it}^* + \alpha_i + \gamma_t + \epsilon_{it}
\] \hspace{1cm} (28)

\[
\ln h_{it+2} = \beta_1 \Delta \ln w_{it+2}^* + \beta_2 a_{it} + \beta_3 a_{it} \Delta \ln w_{it+2}^* + \alpha_i + \gamma_t + \epsilon_{it}
\] \hspace{1cm} (29)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>Current Income Shock</th>
<th>Future Income Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>1.205***</td>
<td>0.915***</td>
</tr>
<tr>
<td></td>
<td>(0.374)</td>
<td>(0.295)</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>-0.031</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>(0.034)</td>
<td>(0.051)</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>-0.170*</td>
<td>-0.381</td>
</tr>
<tr>
<td></td>
<td>(0.098)</td>
<td>(0.332)</td>
</tr>
</tbody>
</table>

| Observations | 53,383 | 53,383 |
| Number of ID | 12,769 | 12,769 |

Table 26: Labor supply elasticity, total wealth, current and future income shocks

\[
\ln h_t = c + \beta_1 \sum_{i=0}^{1} g_{t-i} + \beta_2 \Delta B_t + \beta_3 \Delta B_t \sum_{i=0}^{1} g_{t-i} + \alpha_i + \epsilon_t
\] \hspace{1cm} (30)

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) Total wealth<0</th>
<th>(2) Total wealth>0</th>
<th>(3) Total wealth> $12000</th>
<th>(4) Total wealth< 1/2i</th>
<th>(5) Total wealth> 1/2i</th>
<th>(6) Total wealth> i</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>1.060**</td>
<td>0.047</td>
<td>0.055</td>
<td>0.062</td>
<td>-0.030</td>
<td>0.012</td>
</tr>
<tr>
<td></td>
<td>(0.477)</td>
<td>(0.037)</td>
<td>(0.039)</td>
<td>(0.057)</td>
<td>(0.034)</td>
<td>(0.036)</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>6.355**</td>
<td>0.750**</td>
<td>0.700**</td>
<td>1.548***</td>
<td>0.193</td>
<td>-0.282</td>
</tr>
<tr>
<td></td>
<td>(2.603)</td>
<td>(0.349)</td>
<td>(0.357)</td>
<td>(0.519)</td>
<td>(0.306)</td>
<td>(0.328)</td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>-0.315**</td>
<td>-0.037**</td>
<td>-0.035**</td>
<td>-0.076***</td>
<td>-0.009</td>
<td>0.014</td>
</tr>
<tr>
<td></td>
<td>(0.129)</td>
<td>(0.017)</td>
<td>(0.017)</td>
<td>(0.025)</td>
<td>(0.015)</td>
<td>(0.016)</td>
</tr>
</tbody>
</table>

| Observations | 7,075 | 61,980 | 47,914 | 36,080 | 37,328 | 31,399 |
| Number of ID | 2,308 | 11,390 | 8,734 | 8,711 | 7,397 | 6,308 |

Table 27: G shock, labor supply response and financing regime by total wealth

Standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1
\[\ln h_{it} = \beta_1 G_t + \beta_2 a_t + \beta_3 \Delta B_t + \beta_4 a_t G_t + \beta_5 \Delta B_t G_t + \beta_6 a_t \Delta B_t + \beta_7 a_t \Delta B_t G_t + \alpha_i + \gamma_t + \epsilon_{it} \]

(31)

\(\Delta B_t \) is change of government debt as a percentage of GDP. Given that we are controlling for debt changes and wealth, \(\beta_1 \) can be interpreted as the labor supply response of an agent with zero wealth when debt is not changing. According to the model predictions \(\beta_1 \) should be positive, as agents increase their labor supply in response to a positive fiscal shock. \(\beta_4 \) captures how the labor supply response depends on wealth, given that public debt is not changing. Our model predicts this term to be negative, as in a balanced budget financing regime wealthier agents are the ones responding the least to the shock. \(\beta_7 \) captures how the relation between wealth and the spending shock changes when the shock is financed with debt. To be in line with our model, this coefficient should be positive, as the labor supply of wealthier agents responds the most for deficit-financed shocks. Lastly, the coefficient \(\beta_5 \) tells

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1) G Shock</th>
<th>(2) G Shock</th>
<th>(3) G Shock</th>
<th>(4) G Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1)</td>
<td>0.327</td>
<td>0.068**</td>
<td>0.166</td>
<td>0.073**</td>
</tr>
<tr>
<td></td>
<td>(0.232)</td>
<td>(0.031)</td>
<td>(0.180)</td>
<td>(0.032)</td>
</tr>
<tr>
<td>(\beta_2)</td>
<td>3.423</td>
<td>1.262</td>
<td>(2.923)</td>
<td>(1.837)</td>
</tr>
<tr>
<td></td>
<td>(0.304)</td>
<td>(0.347)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_3)</td>
<td>0.873***</td>
<td>0.647*</td>
<td>(0.304)</td>
<td>(0.347)</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.096)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_4)</td>
<td>-0.173</td>
<td>-0.069</td>
<td>(0.173)</td>
<td>(0.096)</td>
</tr>
<tr>
<td></td>
<td>(0.145)</td>
<td>(0.096)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_5)</td>
<td>-0.044***</td>
<td>-0.033*</td>
<td>(0.015)</td>
<td>(0.017)</td>
</tr>
<tr>
<td></td>
<td>(0.015)</td>
<td>(0.017)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_6)</td>
<td>-0.650</td>
<td>-0.650</td>
<td>(0.919)</td>
<td>(0.919)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\beta_7)</td>
<td>0.032</td>
<td>0.032</td>
<td>(0.045)</td>
<td>(0.045)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observations</td>
<td>81,678</td>
<td>81,678</td>
<td>81,678</td>
<td>81,678</td>
</tr>
<tr>
<td>Number of ID</td>
<td>17,670</td>
<td>17,670</td>
<td>17,670</td>
<td>17,670</td>
</tr>
</tbody>
</table>

Standard errors in parentheses
*** \(p<0.01 \), ** \(p<0.05 \), * \(p<0.1 \)

Table 28: G shock, labor supply response, total wealth and financing regime

69
us whether the financing regime affects the average labor supply response: deficit-financed shocks in the model generate smaller fiscal multipliers, due to a more muted labor supply response. This would be consisted with \(\beta_5 < 0 \).

Results in Table 28 show that the coefficient signs are all in line with what we would expect, thus validating the model mechanism. For a 1% fiscal spending shock, when debt is not changing, an increase of wealth by one standard deviation decreases the labor supply response by 94.5%. If debt increases by 1%, the response of an household with zero wealth decreases by 45.2%, while a household with wealth equal to one standard deviation increases its labor supply response by 800%.