Monetary and macroprudential policy with foreign currency loans

Michał Brzoza-Brzezina, Marcin Kolasa, Krzysztof Makarski
Monetary and macroprudential policy with foreign currency loans

Michał Brzoza-Brzezina, Marcin Kolasa, Krzysztof Makarski
Contents

1 Introduction 5

2 Model 7
 2.1 Households ... 7
 2.2 Banks .. 9
 2.3 Other building blocks 9

3 Calibration 10

4 Results 12
 4.1 Foreign currency loans and effectiveness of monetary and macro-
 prudential policies 12
 4.2 Welfare implications of foreign currency loans 13
 4.3 Using regulation to change the share of FCLs 14

5 Conclusions 16

References 17

Tables and figures 20
Abstract

In a number of countries a substantial proportion of mortgage loans is denominated in foreign currency. In this paper we demonstrate how their presence affects economic policy and agents’ welfare. To this end we construct a small open economy model with financial frictions where housing loans can be denominated in domestic or foreign currency. We calibrate the model for Poland - a typical small open economy with a large share of foreign currency loans (FCL) - and use it to conduct a series of simulations. They show that FCLs negatively affect the transmission of monetary policy. In contrast, their impact on the effectiveness of macroprudential policy is much weaker but positive. We also demonstrate that FCLs increase welfare when domestic interest rate shocks prevail and decrease it when risk premium (exchange rate) shocks dominate. Under a realistic calibration of the stochastic environment FCLs are welfare reducing. Finally, we show that regulatory policies that correct the share of FCLs may cause a cyclical slowdown.

JEL: E32, E44, E58

Keywords: foreign currency loans, monetary and macroprudential policy, DSGE models with banking sector
Chapter 1

1 Introduction

Foreign currency loans (FCL) have become highly popular in many emerging and even some advanced economies since the early 2000s. In the European Union the problem affected i.a. Bulgaria, Hungary, Romania, Poland and even Austria. In the former three countries in 2013 FCLs accounted for approximately 60% of loans to the non-banking sector, in Poland this share was close to 30%, and in Austria slightly below 20% (SNB, 2013). In the mortgage segment the share was even higher. For instance, in Poland, for which our model is calibrated, over 50% of mortgage loans outstanding in 2013 were denominated in foreign currency. Foreign currency loans offer some advantages to borrowers, in particular lower interest rates and possibly longer maturities. At the same time, however, they constitute an important source of systemic risk in the economy. Sharp depreciations of the domestic exchange rate bring about a surge in servicing costs expressed in borrowers’ domestic (income) currency, which may, in most extreme cases, lead to mass defaults and systemic banking crises (Yesin, 2013).

FCLs have also been recognized to affect the transmission of domestic monetary policy. In particular, the impact of domestic interest rates on the economy may be weaker when borrowers are able to substitute domestic currency loans (DCL) for FCLs in response to a rise in the domestic interest rate. Additionally, given the rapid expansion of macroprudential supervision, understanding the link between FCLs and regulatory instruments seems of particular importance as well. The impact of foreign currency lending on the economy has repeatedly gained attention of policymakers including microprudential (regulatory), macroprudential and monetary authorities (Dübél and Walley, 2010; ESRB, 2011; Bakker et al., 2012; Lim et al., 2011). In many countries lending in foreign currency has been restricted by the financial supervision over the last few years.

This paper analyzes the role of FCLs through the lens of a dynamic stochastic general equilibrium (DSGE) model. As such it connects two important streams in the literature: the modeling literature on financial frictions and the empirical literature on the relationship between FCLs and macroeconomic policy.

From the modeling perspective we build on the seminal papers of Kiyotaki and Moore (1997) and Iacoviello (2005) who developed a workhorse DSGE model with credit constraints and housing that serves as collateral. Models based on this framework have been successfully applied in the past to analyze a number of related issues like the impact of macroprudential policy on the business cycle or spillovers from the housing market to the economy (e.g. Gerali et al., 2010;
This framework fits also our needs since it contains the key ingredients given our research questions, i.e. mortgage loans and the possibility to introduce regulatory policy in the form of LTV requirements. Of course, this benchmark is modified in several directions. In particular, we extend it to a small open economy setting and introduce FCLs.

Regarding the main topic at hand, our study relates to the literature on foreign currency lending and its connections with monetary and macroprudential policies. This literature has a strong empirical flavor. As regards the links to monetary policy, the relationship between interest rates, exchange rates and FCLs is crucial. As documented in Magud et al. (2011), both fixed exchange regimes or high interest rate differentials increase the share of foreign currency loans. The latter finding has been confirmed in several other studies including Egert et al. (2007), Rosenberg and Tirpák (2009) and Brzoza-Brzezina et al. (2010), and is crucial to understand how FCLs can weaken the monetary transmission. Especially the last paper deals explicitly with this problem. Based on a panel of four Central European countries the study shows that after a monetary policy tightening, more than 50% of eliminated DCLs can return to the economy as FCLs.

Much less research has been conducted on the link between macroprudential policy and FCLs. The main question of interest so far has been whether appropriately designed regulation is able to reduce the share of FCLs in the economy. For instance, Lim et al. (2011) show that some regulatory actions targeted at limiting the amount of FCLs have been efficient in the past. However, to our knowledge, the impact of FCLs on the effectiveness of macroprudential policy has not been analyzed so far.

In contrast, the existing literature, this paper offers a more theoretical, but nevertheless quantitative, perspective on the subject. We construct a micro-founded small open economy model with domestic and foreign currency loans. The model is calibrated to Poland, a typical small open economy with a relatively large share of FCLs. Next we apply the model to show how the presence of FCLs affects the monetary and macroprudential policy transmission. Finally, we analyze the welfare implications of foreign currency lending. To our knowledge, this is the first paper to analyze FCLs in mortgage markets from this normative perspective. Moreover, as mentioned earlier, the implications of FCLs for macroprudential policy have not been analyzed before, either.

\[\text{In contrast, a number of papers have analyzed foreign currency lending in the corporate sector, see e.g. Elekdag and Tchakarov (2007), Gertler et al. (2007) or Kolasa and Lombardo (2014).}\]
Our main findings are as follows. First, foreign currency loans negatively affect the transmission of monetary policy but do not significantly impact on the effectiveness of macroprudential policy. Second, we find that FCLs increase welfare when domestic interest rate shocks are strong and decrease it when risk premium (exchange rate) shocks dominate. Under a realistic calibration of the complete stochastic environment, FCLs are welfare reducing. Third, eliminating the described inefficiencies through regulation discriminating against FCLs may have a short-run contractionary impact on the economy.

The rest of the paper is structured as follows. Section two describes the model and section three its calibration. Section four discusses the impact of foreign currency loans on the transmission of monetary and macroprudential policy and on welfare. Section five concludes.

2 Model

Our departure point is a standard New Keynesian framework for a small open economy, which we extend to incorporate credit in a way that allows us to accommodate both domestic and foreign currency denomination of loans. In what follows we describe in detail our extension, which concerns mainly the household sector, and provide only a brief summary of the model’s remaining building blocks. A full list of model equations can be found in the Appendix.

2.1 Households

To introduce credit, we distinguish between two types of households whose preferences differ in the degree to which they discount the future utility flows. In this way we obtain a distinction between natural borrowers (impatient households) and lenders (patient households), denoted by I and P, respectively. Within each group, a representative agent $i \in \{I, P\}$ maximizes

$$
E_{0} \left\{ \sum_{t=0}^{\infty} \beta^{-t} \left[\log(c_{i,t}(t) - \xi c_{i,t-1}) + A \log \chi_{i,t}(t) - A_{n} \frac{n_{i,t}(t)^{1+\sigma_{n}}}{1+\sigma_{n}} \right] \right\}
$$

with $\beta I < \beta P$. In the formula above, c_{i} is consumption, $\chi_{i,t}$ denotes housing stock and $n_{i,t}$ is labor supply.
Patient households’ maximization is subject to a standard budget constraint

\[P_t c_{\Pi,t} (t) + P_{x,t} (\chi_{\Pi,t} (t) - (1 - \delta_x) \chi_{\Pi,t-1} (t)) + P_{k,t} (k_t (t) - (1 - \delta_k) k_{t-1} (t)) + D_t (t) \leq \]
\[\leq W_{P,t} n_{P,t} (t) + R_{k,t} k_{t-1} (t) + R_{t-1} D_{t-1} (t) + \Pi_t + T_{P,t} + \Xi_{P,t} (t) \quad (2) \]

where \(k_t \) is physical capital, \(R_{k,t} \) denotes its rental rate, \(\Pi_t \) is profits from monopolistically competitive firms and banks, \(T_{I,t} \) is lump-sum net transfers, \(\Xi_{I,t} \) stands for net payments from insurance policies traded between households of a given type and insulating them from idiosyncratic labor income risk, \(P_{x,t} \) and \(P_{k,t} \) denote housing and physical capital prices, \(W_{I,t} \) is nominal wage while \(D_t \) stands for deposits denominated in domestic currency and paying risk-free rate \(R_{t} \), fully controlled by the monetary authority.

Impatient households do not accumulate physical capital, do not hold any equity and can take loans both in domestic and foreign currency. Their budget constraint can be written as

\[P_t c_{I,t} (t) + P_{x,t} (\chi_{I,t} (t) - (1 - \delta_x) \chi_{I,t-1} (t)) + R_{H,t-1} L_{H,t-1} (t) + S_t (1 + \gamma_{t-1}) R_{F,t-1} L_{F,t-1} (t) \leq \]
\[\leq W_{I,t} n_{I,t} (t) + L_t (t) + T_{I,t} + \Xi_{I,t} (t) \quad (3) \]

where \(L_{H,t} \) and \(L_{F,t} \) are domestic and foreign currency loans, \(R_{H,t} \) and \(R_{F,t} \) denote interest paid on these loans, \(\gamma_t \) is a tax set by the macroprudential authority (to be explained in Section 4.3), \(S_t \) is the nominal exchange rate, and the loan aggregate is defined using the following constant elasticity of substitution (CES) function

\[L_t (t) = \left[\frac{\tau}{\eta_{L,t} (t)} L_{H,t} (t)^{\sigma_{L,t} - 1} + \frac{1}{\eta_{L,t} (t)} L_{F,t} (t)^{\sigma_{L,t} - 1} \right]^{\frac{\sigma_{L,t}}{\sigma_{L,t} - 1}} \quad (4) \]

where \(\eta_{L,t} \) denotes the share of domestic currency loans in total loans that is governed by a stochastic process. The formula above implies that we treat domestic and foreign currency loans as imperfect substitutes even in a non-stochastic environment. This modeling choice can be interpreted as a short-cut for households’ preferences or implicit costs of changing the loan portfolio structure.

Additionally, impatient households’ optimization is subject to the following

\[\text{To offset implicit transfers from impatient to patient households that arise from the loan aggregate } L_t \text{ falling short of the financial flows generated by the banking sector } L_{H,t} + S_t L_{F,t}, \]
\[\text{this difference is rebated back to impatient households in a lump sum manner and included in } \Xi_t. \]
collateral constraint

\[
R_{H,t} L_{H,t} (t) + \mathbb{E}_t \{(1 + \tau_t) R_{F,t} S_{t+1} L_{F,t} (t)\} \leq m_t (1 - \delta) \mathbb{E}_t \{P_{X,t+1} \chi_{I,t} (t)\} \tag{5}
\]

where \(m_t\) denotes the loan to value (LTV) ratio on total loans. We assume that it is set by the macroprudential authority.

2.2 Banks

Both types of loans are supplied by a continuum of monopolistically competitive banks indexed by \(j\), who refinance them by collecting deposits from patient households and by borrowing from abroad. A representative bank maximizes

\[
\mathbb{E}_0 \left\{ \beta P \left[R_{H,t} (j) L_{H,t} (j) + S_{t+1} R_{F,t} (j) L_{F,t} (j) - R_t D_t (j) - S_{t+1} \rho t R_t^* D'_t (j) \right] \right\}
\]

subject to the flow of funds constraint

\[
L_{H,t} (j) + S_t L_{F,t} (j) = D_t (j) + S_t D'_t (j) \tag{7}
\]

and the demand for loans implied by the following Dixit-Stiglitz loan aggregators (for \(h \in \{H, F\}\))

\[
\int_0^{\omega_t} L_{h,t} (t) dt = \left[\int_0^1 L_{h,t} (\xi) \mu_t d\xi \right]^{\mu_t} \tag{8}
\]

where \(\omega_t\) is the relative size of impatient households, \(u_{t,t}\) is agents’ \(t\) marginal utility of real income, \(D'_t\) is borrowing from abroad, \(R_t^*\) is the interest rate controlled by the foreign monetary authority and \(\rho_t\) is the risks premium that depends on foreign debt and risk premium shocks.\(^3\)

2.3 Other building blocks

Since the rest of the model is fairly standard, we only briefly summarize its main components. Output is produced by monopolistically competitive firms that combine labor and capital services using the standard Cobb-Douglas technology. Their prices are set in a staggered fashion according to the Calvo scheme and are sticky in the consumers’ currency (local currency pricing). Labor supplied by patient and impatient households is aggregated into labor services using

\(^3\)The risk premium is introduced only to render the model stationary and calibrated such that it does not substantially affect the model dynamics.
a CES technology. Capital and housing are purchased by households from perfectly competitive capital and housing goods producers who combine the existing stocks with capital- and housing-specific investment, subject to adjustment costs and asset-specific shocks. Final consumption and capital investment goods are defined as CES aggregators of domestic and foreign goods while residential investment and government purchases are assumed to have only domestic content. As typically done in a small open economy setup, the foreign block is exogenous and the three key foreign variables (output, inflation and the interest rate) are assumed to follow first-order autoregressions with correlated innovations.

The model is closed by imposing a standard set of market clearing conditions and defining the rules for the fiscal, monetary and regulatory authorities. More specifically, the government spending is modeled as an exogenous process and the lump-sum taxes levied on households are adjusted such that the budget is balanced each period. The central bank adjusts its short-term interest rates according to a Taylor-like rule that allows for interest rate smoothing and includes i.i.d. monetary shocks. Finally, the LTV ratio set by the regulatory authority is assumed to be exogenous.

3 Calibration

We calibrate the model to match the Polish data. Several parameters are set to match the key steady state ratios, reported in Table 1, using the 2000-2012 averages for Poland as the targets. Other parameters are taken from the literature. The calibrated values of structural parameters and stochastic shocks are summarized in Tables 2 and 3. Throughout, the unit of time is one quarter.

We choose 0.0054 as the housing stock depreciation rate and 0.56 as the housing weight in utility to match, respectively, the residential investment share in output equal to 2.8% and the steady state housing stock to output ratio of 1.3. The share of impatient households is calibrated at 0.75 to fit the mortgage loans to output ratio of 75%. Following Coenen et al. (2008), we choose transfers from patient to impatient agents so that consumption of the latter falls short of that of the former by no more than 25%. Finally, we calibrate the markup in the banking sector to match the average spread between the lending rate and the policy rate of 190 bp annually. Setting the weight of labor in utility to 110 allows us to match the share of working time of 32%. Finally, the share of FCLs in the loan aggregator (4) is calibrated at 0.5, roughly in line with the post-crisis data on lending to households.
While calibrating households’ preferences, we follow the literature. Similarly to Iacoviello and Neri (2010), we set the discount factors for patient and impatient households to 0.993 and 0.985, respectively. The inverse of the Frisch elasticity as well as the inverse of the intertemporal elasticity of substitution in consumption are set to 2. Following Brzoza-Brzezina et al. (2014), we calibrate the degree of habit formation in consumption to 0.75. We pick 0.85 as the steady-state LTV ratio.

The steady state markups in the labor and product markets are set to 20%. The capital share in output is at the standard value of 0.32. Following Coenen et al. (2008), we set the elasticity of substitution between domestic and imported goods to 1.5 and the elasticity of substitution between patient and impatient households’ labor to 6.4

We calibrate the degree of price stickiness in line with Brzoza-Brzezina et al. (2014), which additionally is supported by empirical evidence on price stickiness in Poland and the euro area presented in Macias and Makarski (2013) and Dhyne et al. (2006). The Calvo probabilities for domestic, import and export prices are all set to 0.75. The sensitivity of the risk premium is fixed at 0.02, which ensures that foreign debt is stabilized at zero in the long run without substantially affecting the model’s short-run dynamics.

We parametrize the Taylor rule in line with the estimated DSGE models for Poland, i.e. interest rate smoothing equal to 0.75, the long-run response to inflation of 2 and that to output equal to 0.5. The steady state inflation rate is set to 0.5% quarterly, which is close to the inflation target in Poland.

One of the structural parameters that cannot be taken directly from the literature is the elasticity of substitution between foreign and domestic currency loans. We calibrate it somewhat arbitrarily at 6 but discuss the sensitivity of our results to some alternative values.

The parameters determining the evolution of stochastic shocks are calibrated to match the model moments to the data, all of which are detrended with the Hodrick-Prescott filter. More specifically, since foreign output, inflation and interest rates are exogenous to the rest of the model and directly observed, we use the data for the euro area and estimate the autoregressive processes that shape their behavior. We proceed similarly with government expenditure by fitting an AR(1) process to the Polish government consumption time series.

The remaining stochastic shocks as well as the elasticity of the residential and non-residential investment adjustment cost are calibrated so that the weighted

4To be precise, Coenen et al. (2008) distinguish between Ricardian and rule-of-thumb agents.
distance between the selected moments from the data and their model-based counterparts is minimized. The procedure is similar to the simulated method of moments used e.g. in Ruge-Murcia (2012). The only difference is that in our case we do not run simulations but rather use the ergodic moments implied by the model solution.

More precisely, consider stationary data x_t. Denote the vector of moments computed from this data as $m(x_t)$. For any parameter $\theta \in \Theta$ (for which the solution to the model exists), we can compute the moments from the model $m(x(\theta))$. The parameters $\hat{\theta}$ are chosen as follows

$$\hat{\theta} = \arg\min_{\theta \in \Theta} [m(x_T) - m(x(\theta))] W [m(x_T) - m(x(\theta))]$$

where W is the diagonal matrix of the long-run variance of the moments computed using the Newey-West estimator with a Barlett kernel and bandwidth given by the integer of $4(T/100)^{2/9}$ and T denotes the sample size. As regards the moments collected in m, we use the standard deviations and first order autocorrelations of the following variables: output, consumption, non-residential investment, residential investment, inflation, interest rate, domestic currency mortgage loans, foreign currency mortgage loans and real exchange rate.

To show the workings of our model, in Table 4 we present the moments from the model against the ones from the data. We obtain an adequate data fit, except for the mismatch of correlation of inflation with output and underestimation of real exchange rate volatility. However, given that the former varies over time and the fact that exchange rate fluctuations are usually underestimated in this class of models, we consider our calibration satisfactory.

4 Results

While presenting the results we focus on the effects of FCLs on the effectiveness of both monetary and macroprudential policies as well as on welfare.

4.1 Foreign currency loans and effectiveness of monetary and macroprudential policies

We first check how foreign currency loans affect the transmission of monetary policy. The relevant impulse response functions are presented in Figure 1. As a benchmark we show the responses to a monetary policy shock in absence of
4.1 Foreign currency loans and effectiveness of monetary policy

In this case we have the standard financial accelerator at work, which, as known from the literature, amplifies the monetary transmission. Lower lending after the monetary policy shock drives down housing demand, lowers house prices and leads to a tightening of the collateral constraint. As a result, consumption further declines and so do output and inflation. If all loans are denominated in foreign currency, the financial accelerator is much weaker. This is because the relevant (i.e. foreign) interest rate does not change while the exchange rate appreciates, boosting impatient households’ financial position. Finally, the impulse responses for our calibrated case (with 50% of FCLs) are located between these two extremes.

Our second experiment shows how the denomination of loans affects the potency of macroprudential policy. This is shown in Figure 2. It turns out that the difference between the impulse responses in the cases of domestic and foreign currency lending is much smaller. To see why, note that an LTV shock affects the real economy but has little effect on inflation, while the monetary authority responds mainly to the latter. As a result, the domestic interest rate moves only slightly (not reported) and hence the exchange rate movements are moderate. Actually, the fall in output caused by an LTV tightening implies a monetary policy easing and exchange rate depreciation, which hits impatient households’ balance sheets if loans are denominated in foreign currency. Hence, the presence of FCLs amplifies the effects of macroprudential policy. However, as noted before, the magnitude of this amplification is not large.

4.2 Welfare implications of foreign currency loans

In this section we show how foreign currency loans affect agents’ welfare. We do this by comparing the model-consistent utility for different shares $\eta_{L,x}$ of DCLs in households’ portfolio. We report the results separately for patient and impatient households, as well as using aggregate welfare computed as follows (see e.g. Lambertini et al., 2013; Rubio and Carrasco-Gallego, 2014)

$$U_t = \omega_P (1 - \beta_P) U_{P,t} + \omega_I (1 - \beta_I) U_{I,t}$$

where $U_{P,t}$ and $U_{I,t}$ are second-order approximations to the lifetime utility of patient and impatient households, respectively.

Welfare is presented as consumption equivalent, defined as percent of lifetime consumption that households would be willing to forgo to have only domestic currency loans in their portfolio (with total loans unchanged). The results are

NBP Working Paper No. 184
presented for three cases. First, we analyze the case where only domestic monetary policy shocks exist in the economy. Next, we move to the case with only risk premium (exchange rate) shocks. Finally, we show the welfare implications of FCLs in the complete stochastic environment.

Figure 3 shows the welfare effects of FCLs when domestic monetary policy is the only source of aggregate risk. It is intuitive that in such a case agents should dislike DCLs and prefer FCLs, since the latter generate less volatility in their consumption, housing and labor effort. Indeed, impatient agents’ welfare can be raised by up to 0.18% if DCLs are substituted with FCLs. Also aggregate welfare can be raised by 0.15% in this case. Interestingly, the welfare function is not monotonic as the maxima are reached for a 13% share of DCLs in the portfolio. The reason is intuitive. Monetary policy shocks affect not only the domestic interest rate, but also the exchange rate. Fluctuations in the former discourage from holding DCLs, while those of the latter strongly affect impatient households’ balance sheets when FCLs are held. Our welfare function solves the trade-off problem generated by these two effects, but gives a clear preference to FCLs.

An opposite case arises when only risk premium shocks are present. These move primarily the exchange rate and this effect clearly dominates any other spillovers. As evidenced in Figure 4, in this scenario DCLs are preferred unequivocally. If agents decide to hold only FCLs, their welfare loss is equivalent to 1.3% of lifetime consumption. The number for impatient agents is even higher, and goes up to almost 2%.

Finally, we show the results for the complete stochastic environment. As presented in Figure 5, again there is an internal optimum, although the peak is much less pronounced than in the first case. Welfare is maximized for a DCL share of 87%, but in fact the function if almost flat in the 70-100% region. However, for lower DCL shares welfare losses can be substantial, reaching 1.2% of lifetime consumption if agents hold only FCLs. For impatient agents the loss may attain 1.9%. This result clearly speaks in favor of holding a loan portfolio that primarily consists of domestic currency loans.

4.3 Using regulation to change the share of FCLs
In the preceding two subsections we documented that a substantial share of FCLs may decrease the effectiveness of monetary policy and negatively affect welfare. A natural question arises whether regulation can be used to reduce the share of FCLs and what is the cost of such an action. To check this we design two
Results

additional regulatory tools, whose role is to change the composition of the loan portfolio. The first tool targets directly the composition by setting the maximum share of DCLs in total loans to an exogenously defined value \(\vartheta_t \equiv \frac{L_t^{DCL}}{L_t} \).

The second instrument works through the cost channel as it introduces a tax \(\tau_t \) on foreign loans. This tax shows up in impatient households’ budget constraint (3), raising effective cost of FCLs, as well as in the collateral constraint (5), raising the repayment value of debt. These two alternative instruments are applied separately and in a non-stochastic environment.

First, we document how the economy reacts if macroprudential policy is used to permanently lower the share of FCLs to \(\vartheta_t \). The experiment assumes that the share of FCLs is permanently reduced from 50% (our benchmark equal to the share desired by households) to 45% (imposed by the regulator). The results depend on the degree of substitutability between DCLs and FCLs. If the two types of loans are perfectly substitutable (\(\phi_L = \infty \)), the economy does not react to the shock. Households simply substitute FCLs with DCLs to the extent that keeps total lending and other variables unchanged. However, if FCLs and DCLs are imperfect substitutes (\(\phi_L = 6 \)), the story becomes more interesting. Figure 6 presents the effects of this shock. Borrowers react to the lower imposed share of FCLs by increasing DCLs, though by less than they reduce FCLs. As a result, total loans decline. This leads to a reduction in residential investment. Even though consumption increases (crowding in effect), total output declines (by more in the short-run than in the long-run). Inflation initially goes up, but later declines as its behavior is determined by the central bank and hence it eventually returns to the inflation target.

In the second experiment the tax \(\tau_t \) is permanently imposed by the regulator. If loans are perfectly substitutable, households eliminate FCLs from their portfolio completely and no other variables are affected. However, if loans are not perfectly substitutable, the result is quite different. As Figure 7 shows, after such policy is applied total loans decline (loans are not perfectly substitutable), which leads to lower residential investment and lower consumption. Here, and in contrast to the quantitative restriction policy, the imposition of a tax on FCLs increases debt payments of impatient households and therefore a reduction of consumption of impatient households is stronger. Since patient households increase their consumption (crowding in), total consumption eventually increases. Total output falls and its decline during the transition period is larger than in the long run. Inflation behaves similarly as in the first scenario.
5 Conclusions

Foreign currency loans play an important role in several economies, both advanced and emerging markets. They impact on the economy through several channels. First, they are a source of exchange rate risk for borrowers. Second, empirical evidence shows that they weaken the monetary policy transmission.

In this paper we analyze the role of foreign currency lending in a structural economic model. To this end we construct a small open economy DSGE model with financial frictions in the form of collateral constraints. Households accumulate housing and can take loans in domestic or foreign currency. In this framework we test how the presence of foreign currency lending affects the transmission of monetary and macroprudential policy. Furthermore, we analyze the welfare implications of foreign currency loans.

Our main findings are as follows. First, foreign currency loans impair the transmission of monetary policy but do not affect so much the effectiveness of macroprudential policy. Second, we find that FCLs increase welfare when domestic interest rate shocks are strong and decrease it when risk premium (exchange rate) shocks dominate. Under a realistic calibration of the complete stochastic environment, FCLs are welfare reducing. Third, we show that restoring the effectiveness of monetary policy or improving welfare through FCL discriminating regulation may have a (mainly short-run) negative impact on the economy.
References

Bakker, Bas B., Giovanni Dell’Ariccia, Luc Laeven, Jérôme Vandenbussche, Deniz Igan, and Hui Tong (2012) ‘Policies for macrofinancial stability: How to deal with credit booms.’ IMF Staff Discussion Notes 12/06, International Monetary Fund

Brzoza-Brzezina, Michał, Pascal Jacquinot, and Marcin Kolasa (2014) ‘Can We Prevent Boom-Bust Cycles During Euro Area Accession?’ Open Economies Review 25(1), 35–69

Gerali, Andrea, Stefano Neri, Luca Sessa, and Federico M. Signoretti (2010) ‘Credit and banking in a DSGE model of the euro area.’ Journal of Money, Credit and Banking 42(s1), 107–141

Lambertini, Luisa, Caterina Mendicino, and Maria Teresa Punzi (2013) ‘Leaning against boom-bust cycles in credit and housing prices.’ Journal of Economic Dynamics and Control 37(8), 1500–1522

References

Tables and figures

Table 1: Steady state ratios

<table>
<thead>
<tr>
<th>Steady state ratio</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Share of government expenditure</td>
<td>0.181</td>
</tr>
<tr>
<td>Import of consumer goods to output ratio</td>
<td>0.11</td>
</tr>
<tr>
<td>Import of capital investment goods to output ratio</td>
<td>0.14</td>
</tr>
<tr>
<td>Residential investment to output ratio</td>
<td>0.028</td>
</tr>
<tr>
<td>Capital investment to output ratio</td>
<td>0.177</td>
</tr>
<tr>
<td>Share of FCLs in total loans</td>
<td>0.5</td>
</tr>
<tr>
<td>Hours worked</td>
<td>0.32</td>
</tr>
<tr>
<td>Housing wealth to output ratio (annual)</td>
<td>1.3</td>
</tr>
<tr>
<td>Debt to output ratio (annual)</td>
<td>0.75</td>
</tr>
<tr>
<td>Spread (annualized)</td>
<td>0.019</td>
</tr>
<tr>
<td>Relative consumption of impatient HHs</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Table 2: Calibration - parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>β_P</td>
<td>0.993</td>
<td>Discount factor, patient HHs</td>
</tr>
<tr>
<td>β_I</td>
<td>0.985</td>
<td>Discount factor, impatient HHs</td>
</tr>
<tr>
<td>δ_X</td>
<td>0.0054</td>
<td>Housing stock depreciation rate</td>
</tr>
<tr>
<td>δ_k</td>
<td>0.02</td>
<td>Capital stock depreciation rate</td>
</tr>
<tr>
<td>ω_I</td>
<td>0.75</td>
<td>Share of impatient HHs</td>
</tr>
<tr>
<td>A_X</td>
<td>0.56</td>
<td>Weight on housing in utility function</td>
</tr>
<tr>
<td>A_n</td>
<td>110</td>
<td>Weight on labor in utility function</td>
</tr>
<tr>
<td>σ_n</td>
<td>2</td>
<td>Inverse of Frisch elasticity of labor supply</td>
</tr>
<tr>
<td>ξ</td>
<td>0.75</td>
<td>Degree of external habit formation in consumption</td>
</tr>
<tr>
<td>θ_w</td>
<td>0.75</td>
<td>Calvo probability for wages</td>
</tr>
<tr>
<td>ϕ_n</td>
<td>6</td>
<td>Elasticity of substitution btw. labor of patient and impatient HHs</td>
</tr>
<tr>
<td>τ_I</td>
<td>0.35</td>
<td>Transfers to impatient HHs (relative to government spending)</td>
</tr>
<tr>
<td>μ</td>
<td>1.2</td>
<td>Steady state product markup</td>
</tr>
<tr>
<td>θ_H</td>
<td>0.75</td>
<td>Calvo probability for domestic prices</td>
</tr>
<tr>
<td>θ_F</td>
<td>0.75</td>
<td>Calvo probability for import prices</td>
</tr>
<tr>
<td>θ^*_H</td>
<td>0.75</td>
<td>Calvo probability for export prices</td>
</tr>
<tr>
<td>α</td>
<td>0.32</td>
<td>Output elasticity with respect to capital</td>
</tr>
<tr>
<td>κ_k</td>
<td>0.337</td>
<td>Capital investment adjustment cost</td>
</tr>
<tr>
<td>κ_X</td>
<td>11.83</td>
<td>Housing investment adjustment cost</td>
</tr>
<tr>
<td>μ_L</td>
<td>1.0047</td>
<td>Loan markup</td>
</tr>
<tr>
<td>m</td>
<td>0.85</td>
<td>Steady state LTV ratio</td>
</tr>
<tr>
<td>η_L</td>
<td>0.5</td>
<td>Share of domestic currency loans in total loans</td>
</tr>
<tr>
<td>ϕ_L</td>
<td>6</td>
<td>Elasticity of substitution btw. domestic and foreign currency loans</td>
</tr>
<tr>
<td>π</td>
<td>1.005</td>
<td>Steady state inflation</td>
</tr>
<tr>
<td>ϱ</td>
<td>0.02</td>
<td>Elasticity of risk premium wrt. foreign debt</td>
</tr>
<tr>
<td>γ_R</td>
<td>0.75</td>
<td>Interest rate smoothing in Taylor rule</td>
</tr>
<tr>
<td>γ_π</td>
<td>2</td>
<td>Response to inflation in Taylor rule</td>
</tr>
<tr>
<td>γ_π</td>
<td>0.5</td>
<td>Response to output in Taylor rule</td>
</tr>
<tr>
<td>η_c</td>
<td>0.816</td>
<td>Share of domestic goods in consumption basket</td>
</tr>
<tr>
<td>η_k</td>
<td>0.205</td>
<td>Share of domestic goods in investment</td>
</tr>
<tr>
<td>ϕ_y^*</td>
<td>1.5</td>
<td>Price elasticity of exports</td>
</tr>
<tr>
<td>ϕ_c</td>
<td>1.5</td>
<td>Elasticity of substitution btw. home and foreign consumption goods</td>
</tr>
<tr>
<td>ϕ_k</td>
<td>1.5</td>
<td>Elasticity of substitution btw. home and foreign investment goods</td>
</tr>
</tbody>
</table>
Table 3: Calibration - stochastic shocks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_z</td>
<td>0.92</td>
<td>Productivity shock - autocorrelation</td>
</tr>
<tr>
<td>σ_z</td>
<td>0.007</td>
<td>Productivity shock - standard deviation</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.63</td>
<td>Government spending shock - autocorrelation</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.011</td>
<td>Government spending shock - standard deviation</td>
</tr>
<tr>
<td>ρ_p</td>
<td>0.71</td>
<td>Risk premium shock - autocorrelation</td>
</tr>
<tr>
<td>σ_p</td>
<td>0.004</td>
<td>Risk premium shock - standard deviation</td>
</tr>
<tr>
<td>ρ_{DCL}</td>
<td>0.999</td>
<td>Shock to share of DCLs - autocorrelation</td>
</tr>
<tr>
<td>σ_{DCL}</td>
<td>0.003</td>
<td>Shock to share of DCLs - standard deviation</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.011</td>
<td>Government spending shock - standard deviation</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.002</td>
<td>Monetary shock - standard deviation</td>
</tr>
<tr>
<td>ρ_{L}</td>
<td>0.003</td>
<td>Shock to share of DCLs - standard deviation</td>
</tr>
<tr>
<td>σ_{L}</td>
<td>0.006</td>
<td>Foreign output - standard deviation</td>
</tr>
<tr>
<td>ρ_{π}</td>
<td>0.55</td>
<td>Foreign inflation - autocorrelation</td>
</tr>
<tr>
<td>σ_{π}</td>
<td>0.002</td>
<td>Foreign inflation - standard deviation</td>
</tr>
<tr>
<td>$\rho_{\pi R}$</td>
<td>0.9</td>
<td>Foreign interest rate - autocorrelation</td>
</tr>
<tr>
<td>$\sigma_{\pi R}$</td>
<td>0.001</td>
<td>Foreign interest rate - standard deviation</td>
</tr>
<tr>
<td>$r(\varepsilon_{\pi}, \varepsilon_y)$</td>
<td>0.48</td>
<td>Correlation of residuals from foreign inflation and output equations</td>
</tr>
<tr>
<td>$r(\varepsilon_{\pi R}, \varepsilon_R)$</td>
<td>0.38</td>
<td>Correlation of residuals from foreign inflation and interest rate equations</td>
</tr>
<tr>
<td>$r(\varepsilon_{R R}, \varepsilon_y)$</td>
<td>0.73</td>
<td>Correlation of residuals from foreign interest rate and output equations</td>
</tr>
</tbody>
</table>

Table 4: Moment matching

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standard dev.</th>
<th>Autocorrelation</th>
<th>Corr. with output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Data</td>
<td>Model</td>
<td>Data</td>
</tr>
<tr>
<td>Output</td>
<td>1.3</td>
<td>0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.95</td>
<td>1.17</td>
<td>0.82</td>
</tr>
<tr>
<td>Non-Residential investment</td>
<td>5.96</td>
<td>6.13</td>
<td>0.94</td>
</tr>
<tr>
<td>Residential investment</td>
<td>5.11</td>
<td>5.3</td>
<td>0.82</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.45</td>
<td>0.49</td>
<td>0.44</td>
</tr>
<tr>
<td>Interest rate</td>
<td>1.7</td>
<td>2.12</td>
<td>0.92</td>
</tr>
<tr>
<td>DCLs</td>
<td>8.97</td>
<td>8.95</td>
<td>0.88</td>
</tr>
<tr>
<td>FCLs</td>
<td>9.84</td>
<td>10.04</td>
<td>0.90</td>
</tr>
<tr>
<td>Real exchange rate</td>
<td>7.15</td>
<td>2.16</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Note: All variables are quarterly data for Poland for the period 2000-2012. All variables are detrended with Hodrick-Prescott filter.
Tables and figures

Table 3: Calibration - stochastic shocks

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ρ_z</td>
<td>0.92</td>
<td>Productivity shock - autocorrelation</td>
</tr>
<tr>
<td>σ_z</td>
<td>0.007</td>
<td>Productivity shock - standard deviation</td>
</tr>
<tr>
<td>ρ_g</td>
<td>0.63</td>
<td>Government spending shock - autocorrelation</td>
</tr>
<tr>
<td>σ_g</td>
<td>0.011</td>
<td>Government spending shock - standard deviation</td>
</tr>
<tr>
<td>ρ_ρ</td>
<td>0.71</td>
<td>Risk premium shock - autocorrelation</td>
</tr>
<tr>
<td>σ_ρ</td>
<td>0.004</td>
<td>Risk premium shock - standard deviation</td>
</tr>
<tr>
<td>ρ_η</td>
<td>0.999</td>
<td>Shock to share of DCLs - autocorrelation</td>
</tr>
<tr>
<td>σ_η</td>
<td>0.003</td>
<td>Shock to share of DCLs - standard deviation</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.48</td>
<td>Monetary shock - standard deviation</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.002</td>
<td>Monetary shock - standard deviation</td>
</tr>
<tr>
<td>ρ_y</td>
<td>0.91</td>
<td>Foreign output - autocorrelation</td>
</tr>
<tr>
<td>σ_y</td>
<td>0.006</td>
<td>Foreign output - standard deviation</td>
</tr>
<tr>
<td>ρ_π</td>
<td>0.55</td>
<td>Foreign inflation - autocorrelation</td>
</tr>
<tr>
<td>σ_π</td>
<td>0.002</td>
<td>Foreign inflation - standard deviation</td>
</tr>
<tr>
<td>ρ_R</td>
<td>0.9</td>
<td>Foreign interest rate - autocorrelation</td>
</tr>
<tr>
<td>σ_R</td>
<td>0.001</td>
<td>Foreign interest rate - standard deviation</td>
</tr>
</tbody>
</table>

$r(\epsilon_\pi, \epsilon_y)$ = 0.48 Correlation of residuals from foreign inflation and output equations
$r(\epsilon_\pi, \epsilon_R)$ = 0.38 Correlation of residuals from foreign inflation and interest rate equations
$r(\epsilon_R, \epsilon_y)$ = 0.73 Correlation of residuals from foreign interest rate and output equations

Table 4: Moment matching

<table>
<thead>
<tr>
<th>Variable</th>
<th>Standard dev.</th>
<th>Autocorrelation</th>
<th>Corr. with output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>1.3</td>
<td>0.95</td>
<td>0.91</td>
</tr>
<tr>
<td>Consumption</td>
<td>0.95</td>
<td>1.17</td>
<td>0.82</td>
</tr>
<tr>
<td>Non-Residential investment</td>
<td>5.96</td>
<td>6.13</td>
<td>0.94</td>
</tr>
<tr>
<td>Residential investment</td>
<td>5.11</td>
<td>5.3</td>
<td>0.82</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.45</td>
<td>0.49</td>
<td>0.44</td>
</tr>
<tr>
<td>Interest rate</td>
<td>1.7</td>
<td>2.12</td>
<td>0.92</td>
</tr>
<tr>
<td>DCLs</td>
<td>8.97</td>
<td>8.95</td>
<td>0.88</td>
</tr>
<tr>
<td>FCLs</td>
<td>9.84</td>
<td>10.04</td>
<td>0.90</td>
</tr>
<tr>
<td>Real exchange rate</td>
<td>7.15</td>
<td>2.16</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Note: All variables are quarterly data for Poland for the period 2000-2012. All variables are detrended with Hodrick-Prescott filter.

Figure 1: Foreign Currency Loans and Monetary Policy

Figure 2: Foreign Currency Loans and Macroeconomic Policy
Figure 3: Welfare effects of domestic monetary policy shocks

Figure 4: Welfare effects of risk premium shocks

Figure 5: Welfare effects of full composition of shocks
Figure 6: The effects of FCL discrimination under imperfect substitution

Figure 7: The effects of tax on FCL under imperfect substitution
Appendix: List of model equations

In this appendix we present a full list of equations making up our model. Lower-case letters are the real counterparts of the nominal variables defined in section 2. As regards the variables not showing up in the main text and not explicitly defined below, \(q_t \equiv \frac{S_t P^*_t}{P_t} \) is the real exchange rate, \(\pi_t \equiv \frac{P_t}{P_{t-1}} \) is the inflation rate, \(\Theta_t \) is the Lagrange multiplier on the collateral constraint, \(i_{X,t} \) and \(i_{k,t} \) denote residential and capital investment and \(g_t \) is government spending. The variables without time subscripts denote the steady state.

Households

Marginal utilities (for \(i = \{ I, P \} \))

\[
 u_{i,t} = (c_{i,t} - \xi c_{i,t-1})^{-\sigma_c}
\]

Euler equation for patient households

\[
 u_{P,t} = \beta P_t \mathbb{E}_t \left\{ u_{P,t+1} \pi_{t+1}^{-1} \right\} R_t
\]

Impatient households’ budget constraint

\[
 c_{I,t} + p_{X,t}(\chi_{I,t} - (1-\delta)\chi_{I,t-1}) + R_{H,t-1} l_{H,t-1} \pi_{t-1}^{-1} + q_t (1+\tau_{t-1}) R_{F,t-1} (\pi_t^*)^{-1} l_{F,t-1} =
\]

\[
 = w_{I,t} n_{I,t} + h_{H,t} + q_l I_{F,t} + l_{I,t}
\]

Collateral constraint

\[
 R_{H,t} l_{H,t} + (1+\tau_t) R_{F,t} l_{F,t} \mathbb{E}_t \left\{ q_{t+1} \pi_{t+1}^{\alpha} \right\} = m_t (1-\delta) \mathbb{E}_t \left\{ p_{X,t+1} \pi_{t+1} \chi_{I,t} \right\}
\]

Euler equations for impatient households

\[
 u_{I,t} = \left(\frac{l_{H,t}}{\eta_{L,t} l_t} \right)^{\phi_L} \left(\frac{u_{I,t+1} \pi_{t+1}}{\pi_{t+1}} \right) \left(\frac{R_{H,t} + \Theta_t R_{H,t} \mathbb{E}_t \left\{ q_{t+1} \pi_{t+1} \right\}}{R_{I,t} \mathbb{E}_t \left\{ q_{t+1} \pi_{t+1} \right\}} \right)
\]

\[
 u_{I,t} = \left(\frac{q_l I_{F,t}}{(1-\eta_{L,t}) l_t} \right)^{\phi_L} \left(\frac{u_{I,t+1} q_{t+1}}{q_t \pi_{t+1}} \right) \left(\frac{R_{F,t} + \Theta_t (1+\tau_t) R_{F,t} \mathbb{E}_t \left\{ q_{t+1} \pi_{t+1} \right\}}{R_{I,t} \mathbb{E}_t \left\{ q_{t+1} \pi_{t+1} \right\}} \right)
\]

Loan aggregator

\[
 l_t = \left[\left(\frac{l_{H,t}}{\eta_{L,t} l_t} \right)^{\phi_L} \left(\frac{q_{t-1} l_{F,t}}{q_t l_{F,t}} \right)^{\phi_L} \right]^{\phi_L}
\]
Housing Euler equations

\[u_{P,t} p_{X,t} = A_x x_{P,t}^{-\sigma_x} + \beta_P (1 - \delta_x) E_t \{ u_{P,t+1} p_{X,t+1} \} \]

\[u_{i,t} p_{X,t} = A_x x_{I,t}^{-\sigma_x} + \beta_I (1 - \delta_x) E_t \{ u_{i,t+1} p_{X,t+1} \} + \Theta_t m_t (1 - \delta_x) E_t \{ p_{x,t+1} \pi_{t+1} \} \]

Capital Euler equation

\[u_{P,t} p_{k,t} = \beta_P E_t \{ u_{P,t+1} [(1 - \delta_k) p_{k,t+1} + r_{k,t+1}] \} \]

Total consumption

\[c_t = \omega_I c_{I,t} + (1 - \omega_I) c_{P,t} \]

Labor market

Optimal wage set by reoptimizing households (for \(i = \{ I, P \} \))

\[\left(\tilde{w}_{i,t} \right)^{1+\sigma_n} \frac{\mu_w}{\mu_w^{1+\sigma_n}} = \frac{\Omega_{w,i,t}}{\Upsilon_{w,i,t}} \]

Auxiliary functions for optimal wages (for \(i = \{ I, P \} \))

\[\Omega_{w,i,t} = \mu_w A_n \left(w_{i,t} \right)^{\frac{\mu_w}{\mu_w^{1+\sigma_n}}} n_{i,t}^{1+\sigma_n} + \beta_i \theta_w E_t \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{\frac{\mu_w}{1-\mu_w^{1+\sigma_n}}} \Omega_{w,i,t+1} \right\} \]

\[\Upsilon_{w,i,t} = u_{i,t} (w_{i,t})^{\frac{\mu_w}{\mu_w^{1+\sigma_n}}} n_{i,t} + \beta_i \theta_w E_t \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{\frac{1}{1-\mu_w^{1+\sigma_n}}} \Upsilon_{w,i,t+1} \right\} \]

Wage index (for \(i = \{ I, P \} \))

\[w_{i,t}^{\frac{1}{1-\mu_w}} = \theta_w \left(w_{i,t-1} \frac{\pi}{\pi_t} \right)^{\frac{1}{1-\mu_w}} + (1 - \theta_w) w_{i,t}^{\frac{1}{1-\mu_w}} \]

Labor demand (for \(i = \{ I, P \} \))

\[n_{i,t} = \left(\frac{w_{i,t}}{w_t} \right)^{-\phi_n} n_t \]
Aggregate wage

\[w_t = \left[\omega_I w_{I,t}^{1-\phi_n} + (1 - \omega_I) w_{P,t}^{1-\phi_n} \right]^{\frac{1}{1-\phi_n}} \]

Capital and housing producers

Capital accumulation

\[k_t = (1 - \delta_k) k_{t-1} + \left(1 - \frac{\kappa_k}{2} \left(\frac{i_{k,t}}{i_{k,t-1}} - 1 \right) \right) i_{k,t} \]

Price of capital

\[p_{k,t} = p_{k,t} \left(1 - \frac{\kappa_k}{2} \left(\frac{i_{k,t}}{i_{k,t-1}} - 1 \right) \right)^2 - \kappa_k \left(\frac{i_{k,t}}{i_{k,t-1}} - 1 \right) + \frac{\beta_P}{\varphi_c} \left(\frac{u_{P,t+1}}{u_{P,t}} \right) \left(\frac{i_{k,t+1}}{i_{k,t}} - 1 \right) \left(\frac{i_{k,t+1}}{i_{k,t}} \right)^2 \]

Housing accumulation

\[\chi_t = (1 - \delta_\chi) \chi_{t-1} + \left(1 - \frac{\kappa_\chi}{2} \left(\frac{i_{\chi,t}}{i_{\chi,t-1}} - 1 \right) \right) i_{\chi,t} \]

Price of housing

\[p_{H,t} = p_{\chi,t} \left(1 - \frac{\kappa_\chi}{2} \left(\frac{i_{\chi,t}}{i_{\chi,t-1}} - 1 \right) \right)^2 - \kappa_\chi \left(\frac{i_{\chi,t}}{i_{\chi,t-1}} - 1 \right) + \frac{\beta_P}{\varphi_c} \left(\frac{u_{P,t+1}}{u_{P,t}} \right) \left(\frac{i_{\chi,t+1}}{i_{\chi,t}} - 1 \right) \left(\frac{i_{\chi,t+1}}{i_{\chi,t}} \right)^2 \]

Final goods producers

Aggregators

\[c_t = \left(1 - \eta_c \right)^{\frac{\phi_k}{\gamma_k}} c_{F,t} + \frac{\phi_k}{\gamma_k} c_{H,t} - \eta_c c_{H,t} \]

\[i_{k,t} = \left(1 - \eta_k \right)^{\frac{\phi_k}{\gamma_k}} i_{k,F,t} + \frac{\phi_k}{\gamma_k} i_{k,H,t} - \eta_k i_{k,H,t} \]
Demand equations

\[c_{F,t} = (1 - \eta_k) p_{F,t}^{-\tilde{\phi}_c} c_t \]
\[c_{H,t} = \eta_k p_{H,t}^{-\tilde{\phi}_c} c_t \]
\[i_{kF,t} = (1 - \eta_k) \left(\frac{p_{F,t}}{p_{k,t}} \right)^{-\tilde{\phi}_k} i_{k,t} \]
\[i_{kH,t} = \eta_k \left(\frac{p_{H,t}}{p_{k,t}} \right)^{-\tilde{\phi}_k} i_{k,t} \]

Intermediate goods producers

Marginal cost

\[mc_t = \frac{1}{\alpha (1 - \alpha)} \frac{1}{\varepsilon_{z,t}} i_{k,t} w_{t-1}^{-\alpha} \]

Optimal factor proportions

\[\frac{r_{k,t}}{w_{t}} = \frac{\alpha}{1 - \alpha} \frac{n_t}{k_{t-1}} \]

Optimal prices set by reoptimizing firms for domestic market and exports

\[\bar{p}_{H,t} = \frac{\Omega_{H,t}}{\Upsilon_{H,t}} \]
\[\bar{p}^{*}_{H,t} = \frac{\Omega^{*}_{H,t}}{\Upsilon_{H,t}} \]

Auxiliary functions for optimal prices

\[\Omega_{H,t} = u_{P,t} mc_t p_{H,t}^{\alpha} y_{H,t} + \beta P \theta_{H} E_t \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{\alpha} \Omega_{H,t+1} \right\} \]
\[\Omega^{*}_{H,t} = u_{P,t} mc_t (p_{H,t}^{*})^{\alpha} y_{H,t}^{*} + \beta P \theta_{H}^{*} E_t \left\{ \left(\frac{\pi^{*}}{\pi_{t+1}} \right)^{\alpha} \Omega^{*}_{H,t+1} \right\} \]
\[\Upsilon_{H,t} = u_{P,t} \bar{p}_{H,t}^{\alpha} y_{H,t} + \beta P \theta_{H} E_t \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{\alpha} \Upsilon_{H,t+1} \right\} \]
\[\Upsilon^{*}_{H,t} = u_{P,t} \bar{p}^{*}_{H,t} y_{H,t}^{*} + \beta P \theta_{H}^{*} E_t \left\{ \left(\frac{\pi^{*}}{\pi_{t+1}} \right)^{\alpha} \Upsilon^{*}_{H,t+1} \right\} \]
Price indexes for goods produced domestically and for exports

\[
\frac{1}{\pi_H} p_{H,t} = \theta_H \left(p_{H,t-1} \frac{\pi}{\pi_t} \right)^{\frac{1}{\pi}} + (1 - \theta_H) p_{H,t}^{\frac{1}{\pi}}
\]

\[
(p_{H,t}^*)^{\frac{1}{\pi}} = \theta_H^* \left(p_{H,t-1}^* \frac{\pi}{\pi_t} \right)^{\frac{1}{\pi}} + (1 - \theta_H^*) (\tilde{p}_{H,t}^*)^{\frac{1}{\pi}}
\]

Importing firms

Optimal prices set by reoptimizing importers

\[
\tilde{p}_{F,t} = \rho_{t} \frac{\Omega_{F,t}}{\Upsilon_{F,t}}
\]

Auxiliary functions for optimal prices

\[
\Omega_{F,t} = u_{P,t} q_{P_{F,t}} \left(\frac{\pi}{\pi_{t+1}} \right)^{\frac{1}{\pi}} \Omega_{F,t+1} \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{\frac{1}{\pi}} \right\}
\]

\[
\Upsilon_{F,t} = u_{P,t} q_{P_{F,t}} \left(\frac{\pi}{\pi_{t+1}} \right)^{\frac{1}{\pi}} \Upsilon_{F,t+1} \left\{ \left(\frac{\pi}{\pi_{t+1}} \right)^{\frac{1}{\pi}} \right\}
\]

Price index for imports

\[
\frac{1}{\pi_F} p_{F,t} = \theta_F \left(p_{F,t-1} \frac{\pi}{\pi_t} \right)^{\frac{1}{\pi}} + (1 - \theta_F) p_{F,t}^{\frac{1}{\pi}}
\]

Banks

Interest on loans

\[
R_{H,t} = \mu_L R_t
\]

\[
R_{F,t} = \mu_L \rho_t R_t^*
\]

Uncovered interest rate parity

\[
\mathbb{E}_t \left\{ u_{P,t+1} \left(\frac{R_t}{\pi_{t+1}} - \frac{q_{t+1} \rho_t R_t^*}{q_t} \pi_{t+1} \right) \right\} = 0
\]

Risk premium

\[
\rho_t = 1 + \theta_t \left[\exp \left(\frac{d^* q_t}{y_t} - \frac{d^* q}{y} \right) - 1 \right] + \epsilon_{p,t}
\]
Fiscal and monetary authority

Taxes levied on impatient households

$$\omega_{H,t} = \tau_{H} p_{H,t} g_{t}$$

Taylor rule

$$\frac{R_{t}}{R} = \left(\frac{R_{t-1}}{R} \right)^{\gamma R} \left[\left(\frac{\pi_{t}}{\pi} \right)^{\gamma_{u}} \left(\frac{y_{t}}{y} \right)^{\gamma_{y}} \right]^{1-\gamma_{R}} \varepsilon_{R,t}$$

Market clearing

Production for domestic market

$$y_{H,t} = c_{H,t} + i_{kH,t} + i_{x,t} + g_{t}$$

Imports

$$y_{F,t} = c_{F,t} + i_{FK,t}$$

Export demand

$$y_{H,t}^{*} = \eta^{*} (p_{H,t}^{*})^{-\phi^{*}_y} y_{t}^{*}$$

Aggregate output

$$y_{H,t} \Delta_{H,t} + y_{H,t}^{*} \Delta_{H,t}^{*} = \varepsilon_{z,t} k_{t-1}^{\alpha} n_{t}^{1-\alpha}$$

GDP definition

$$y_{t} = y_{H,t} \Delta_{H,t} + y_{H,t}^{*} \Delta_{H,t}^{*}$$

Balance of payments

$$d_{t}^{*} = \Delta_{F,t} y_{F,t} - p_{H,t}^{*} \bar{y}_{H,t} + \theta_{t-1} R_{t-1}^{*} \frac{d_{t-1}^{*}}{n_{t}^{*}}$$

Price dispersion indexes

$$\Delta_{H,t}^{*} = \theta_{H} \left(\frac{p_{H,t}}{p_{H,t-1}} \right)^{-\phi_{y}} \Delta_{H,t-1} \left(\frac{\pi}{\pi_{t}} \right)^{-\gamma_{u}} \left(\frac{\pi_{t}}{\pi} \right)^{-\gamma_{y}} \left(\frac{y_{t}}{y} \right)^{-\gamma_{y}} + (1 - \theta_{H}) \left(\frac{p_{H,t}}{p_{H,t}} \right)^{-\phi_{y}}$$

$$\Delta_{H,t}^{*} = \theta_{H}^{*} \left(\frac{p_{H,t}}{p_{H,t-1}} \right)^{-\phi_{y}} \Delta_{H,t-1}^{*} \left(\frac{\pi_{t}}{\pi_{t}} \right)^{-\gamma_{u}} \left(\frac{\pi_{t}}{\pi} \right)^{-\gamma_{y}} \left(\frac{y_{t}}{y} \right)^{-\gamma_{y}} + (1 - \theta_{H}^{*}) \left(\frac{p_{H,t}}{p_{H,t}} \right)^{-\phi_{y}}$$
\[\Delta_{F,t} = \theta_F \left(\frac{p_{F,t}}{p_{F,t-1}} \right)^{\mu-1} \Delta_{F,t-1} \left(\frac{\pi}{\pi_t} \right)^{\mu-1} + (1 - \theta_F) \left(\frac{\bar{p}_{F,t}}{p_{F,t}} \right)^{\mu-1} \]

Housing market

\[\chi_t = \omega_I \chi_{I,t} + (1 - \omega_I) \chi_{P,t} \]

Wage dispersion indexes (for \(i = \{I, P\} \))

\[\Delta_{w,i,t} = \theta_w \left(\frac{w_{i,t}}{w_{i,t-1}} \right)^{\mu_w (1 + \sigma_n)} \Delta_{w,i,t-1} \left(\frac{\pi}{\pi_t} \right)^{\mu_w (1 + \sigma_n)} + (1 - \theta_w) \left(\frac{\bar{w}_{i,t}}{w_{i,t}} \right)^{\mu_w (1 + \sigma_n)} \]
Stylizowane fakty o cenach konsumenta w Polsce

Paweł Macias, Krzysztof Makarski